Publicación:
Visible Light Communication

dc.contributor.authorGutiérrez, Juan Felipe
dc.contributor.authorQuintero, Jesús María
dc.date.accessioned2023-06-22T00:00:00Z
dc.date.accessioned2026-02-18T14:46:41Z
dc.date.available2023-06-22T00:00:00Z
dc.date.issued2023-06-22
dc.description.abstractThis work presents a general and introductory review of visible light communication. Visible light communication or VLC refers to wireless communications using a spectral range from 380 to 780 nm for the transmission of information. This part of the optical-electromagnetic range presents some advantages to current wireless radio frequency technologies, as well as several challenges to its development and application. Different visible light communication systems have been developed for indoor, outdoor, domestic, and industrial fields where the luminaire performs two tasks: general lighting and data transmission, since this type of communication has important and valuable applications. Recently, research has been performed to improve each functional block’s performance that composes this kind of communication system. The incursion VLC poses challenges such as LED bandwidth limited by the carrier lifetime, the LED-Driver Linearity, it’s up-link; the general lighting infrastructure to the internet; and the dimming and general lighting performance. It is concluded that the incursion of Visible Light Communication into the already extended spectrum of wireless communications systems will complement and make it less harmful to our environment as international regulation has helped to improve this technology substantially. spa
dc.description.abstractEste trabajo presenta una revisión general e introductoria de la comunicación de luz visible. La comunicación con luz visible o VLC (por sus siglas en inglés) se refiere a las comunicaciones inalámbricas que utilizan un rango espectral de 380 a 780 nm para la transmisión de información. Esta parte del rango óptico-electromagnético presentaalgunas ventajas para las tecnologías de radiofrecuencia inalámbrica actuales, así como varios desafíos para su desarrollo y aplicación. Se han desarrollado diferentes sistemas de comunicación de luz visible para el ámbito interior, exterior, doméstico e industrial, donde la luminaria realiza dos tareas: iluminación general y transmisión de datos, ya que este tipo de comunicación tiene importantes y valiosas aplicaciones. Recientemente, se han realizado investigaciones para mejorar el desempeño de cada bloque funcional que compone este tipo de sistema de comunicación. El VLC de incursión plantea desafíos como el ancho de banda de LED limitado por la vida útil del operador, la linealidad del controlador de LED, su enlace ascendente; la infraestructura de iluminación general a internet, y el rendimiento de la iluminación general y de atenuación. Se concluye que la incursión del VLC en el ya extendido espectro de los sistemas de comunicaciones inalámbricas complementará y hará menos nociva para nuestro medio ambiente, ya que la regulación internacional ha ayudado a mejorar sustancialmente esta tecnología.eng
dc.format.mimetypeapplication/pdf
dc.identifier.doi10.21158/23823399.v10.n1.2022.3538
dc.identifier.eissn2745-2220
dc.identifier.issn2382-3399
dc.identifier.urihttps://hdl.handle.net/10882/18801
dc.identifier.urlhttps://doi.org/10.21158/23823399.v10.n1.2022.3538
dc.publisherUniversidad Ean
dc.relation.bitstreamhttps://journal.universidadean.edu.co/index.php/Revistao/article/download/3538/2346
dc.relation.citationeditionAvances en tecnología e innovación: Investigaciones y aplicaciones actuales
dc.relation.citationissue1
dc.relation.citationvolume10
dc.relation.ispartofjournalRevista Ontare
dc.relation.referencesAgrawal, G. P. (2003). Fiber-Optic communication systems. Wiley.
dc.relation.referencesAfzalan, M., & Jazizadeh, F. (2019). Indoor positioning based on visible light communication: A performance-based survey of real-world prototypes. ACM Computing Surveys (CSUR), 52(2), 1-36. https://dl.acm.org/doi/10.1145/3299769
dc.relation.referencesAllycan Mapunda, G., Ramogomana, R., Marata, L., & Basutli, B. (2020). Indoor Visible Light Communication: A Tutorial and Survey. Wireless Communications and Mobile Computing, 2022, Article ID 8881305. https://doi.org/10.1155/2020/8881305
dc.relation.referencesAlsulami, O. Z., Alresheedi, M. T., & Elmirghani, J. M. (2019, August). Infrared uplink design for visible light communication (VLC) systems with beam steering. In 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) (pp. 57-60). IEEE. https://doi.org/10.1109/CSE/EUC.2019.00020
dc.relation.referencesAlsulami, O. Z., Saeed, S. O., Mohamed, S. H., El-Gorashi, T. E., Alresheedi, M. T., & Elmirghani, J. M. (2020, July). Shared optical wireless cells for in-cabin aircraft links. In 2020 22nd International Conference on Transparent Optical Networks (ICTON) (pp. 1-5). IEEE. https://doi.org/10.1109/ICTON51198.2020.9203203
dc.relation.referencesBhalerao, M., Sonavane, S., & Kumar, V. (2013). A survey of wireless communication using visible light. International Journal of Advances in En-gineering & Technology, 5(2), 188-197. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.8028&rep=rep1&type=pdf
dc.relation.referencesBoubezari, R., Le Minh, H., Ghassemlooy, Z., & Bouridane, A. (2016). Smart-phone camera based visible light communication. Journal of Lightwave Technology, 34 (17), 4121-4127.
dc.relation.referencesBradby, I. (2008). Practical experience in radio frequency induced ignition risk assessment for comah/dsear compliance. Institution of chemical engineer’s symposium series, 154, 1-15. https://www.icheme.org/media/9756/xx-paper-62.pdf
dc.relation.referencesButala, P. M., Chau, J. C., & Little, T. D. (2012). Metameric modulation for di use visible light communications with constant ambient lighting. In Optical wireless communications (iwow), 2012 international workshop on (pp. 1{3). https://doi.org/10.1109/IWOW.2012.6349697
dc.relation.referencesChavez-Burbano, P., Rabadan, J., Guerra, V., & Perez-Jimenez, R. (2021). Flickering-free distance-independent modulation scheme for OCC. Electronics, 10(9), 1103. https://www.mdpi.com/2079-9292/10/9/1103
dc.relation.referencesChen, S.-H., & Chow, C.-W. (2014). Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera. IEEE Photonics Journal, 6(6), 1-6. https://doi.org/10.1109/JPHOT.2014.2374612
dc.relation.referencesChi, N., Zhou, Y., Wei, Y., & Hu, F. (2020). Visible light communication in 6G: Advances, challenges, and prospects. IEEE Vehicular Technology Magazine, 15(4), 93-102. https://doi.org/10.1109/MVT.2020.3017153
dc.relation.referencesChow, B. (2015). Assessing the impact of Wi-Fi radio frequency interference on mobile application quality of experience [Unpublished master’s thesis, University of Victoria]. http://hdl.handle.net/1828/6961
dc.relation.referencesThe CAMP Vehicle Safety Communications Consortium (2005). Vehicle safety communications project task 3 final report: Identify intelligent vehicle safety applications enabled by DSRC. https://rosap.ntl.bts.gov/view/dot/3925
dc.relation.referencesDeepa, T., & Mathur, H. (2019). Performance analysis of digitized orthogonal frequency division multiplexing system for future wireless communication. Wireless Personal Communications, 109(4), 2239-2250. https://www.springerprofessional.de/en/performance-analysis-of-digitized-orthogonal-frequency-division-/17100402
dc.relation.referencesDimitrov, S., & Haas, H. (2015). Principles of LED light communications: Towards networked Li-Fi. Cambridge University Press. https://doi.org/10.1017/CBO9781107278929
dc.relation.referencesDurukan, F., Güney, B. M., & Özen, A. (2019, July). A novel CSK modulated OFDM system for visible light communication. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), 647-650. https://doi.org/10.1109/TSP.2019.8768872
dc.relation.referencesEl Gamal, M. M., Maheswar, R., Fayed, H. A., Aly, M. H., Ismail, N. E., & Mokhtar, A. (2021). Dark light visible light communication positioning system with received signal strength technique. Optical and Quantum Electronics, 53(9), 1-16. https://www.springerprofessional.de/en/dark-light-visible-light-communication-positioning-system-with-r/19610196
dc.relation.referencesElgala, H., Mesleh, R., & Haas, H. (2011). Indoor optical wireless communication: potential and state-of-the-art. IEEE Communications Magazine, 49 (9), 56-62. https://doi.org/10.1109/MCOM.2011.6011734
dc.relation.referencesElgala, H., Mesleh, R., Haas, H., & Pricope, B. (2007). OFDM visible light wireless communication based on white LEDs. 2007 IEEE 65th Vehiclar Technology Conference-VTC2007-Spring,007. Vtc2007-18. https://doi.org/10.1109/VETECS.2007.451
dc.relation.referencesFattal, D., Fiorentino, M., Tan, M., Houng, D., Wang, S., & Beausoleil, R. G. (2008). Design of an efficient light-emitting diode with 10 GHz modulation bandwidth. Applied Physics Letters, 93(24), 243501. https://doi.org/10.1063/1.3046100 Gao, S. (2013). Performance study for indoor visible light communication systems [Unpublished master’s thesis, University of Ottawa]. https://ruor.uottawa.ca/bitstream/10393/23986/1/Gao_Shuo_2013_Thesis.pdf
dc.relation.referencesGraeme, J. (1995). Photodiode Amplifiers: OP AMP Solutions. McGraw-Hill, Inc.
dc.relation.referencesGrubor, J., Randel, S., Langer, K.-D., & Walewski, J. (2008). Bandwidth-efficient indoor optical wireless communications with white light-emitting diodes. 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. https://doi.org/10.1109/CSNDSP.2008.4610769
dc.relation.referencesGuo, J. N., Zhang, J., Xin, G., & Li, L. (2020, December). Constant transmission efficiency dimming control scheme for VLC systems. Photonics, 8(1), 7. https://doi.org/10.3390/photonics8010007
dc.relation.referencesGutierrez, J. F. (2018). Diseño e implementación de dos sistemas de comunicación con luz visible mediante las modulaciones OOK y CSK para análisis de desempeño de transmisión de datos e iluminación. [Unpublished master’s thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69483
dc.relation.referencesHalsall, F. (2006). Computer networking and the Internet. Pearson Education India.
dc.relation.referencesIEEE Standards Association. (2019). IEEE Standard for Local and metropolitan area networks—Part 15.7: Short-Range Optical Wireless Communications (IEEE Std 802.15.7-2018, Revision of IEEE Std 802.15.7-2011) (pp. 1-407). https://ieeexplore.ieee.org/document/8697198
dc.relation.referencesJani, M., Garg, P., & Gupta, A. (2019). Performance analysis of a mixed cooperative PLC–VLC system for indoor communication systems. IEEE Systems Journal, 14(1), 469-476. https://doi.org/10.1109/JSYST.2019.2911717
dc.relation.referencesKahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE , 85(2), 265-298. https://ee.stanford.edu/~jmk/pubs/proc.ieee.2.97.pdf
dc.relation.referencesKhalid, A., Cossu, G., Corsini, R., Choudhury, P., & Ciaramella, E. (2012). 1-GB/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 4(5), 1465-1473. https://doi.org/10.1109/JPHOT.2012.2210397
dc.relation.referencesKumari, M., Sharma, R., & Sheetal, A. (2021). A hybrid next-generation passive optical network and visible light communication for future hospital applications. Optik, 242, 166978. https://doi.org/10.1016/j.ijleo.2021.166978
dc.relation.referencesLapinsky, S. E., & Easty, A. C. (2006). Electromagnetic interference in critical care. Journal of Critical Care, 21(3), 267-270. https://doi.org/10.1016/j.jcrc.2006.03.010
dc.relation.referencesLe Minh, H., O’Brien, D., & Faulkner, G. (2010). A gigabit/s indoor optical wireless system for home access networks. 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), 532-536. https://doi.org/10.1109/CSNDSP16145.2010.5580358
dc.relation.referencesLee, C., Zhang, C., Cantore, M., Farrell, R. M., Oh, S. H., Margalith, T., Speck, J. S., Shuji, N., Bowers, J. E. & DenBaars, S. P. (2015). 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Optics express, 23(12), 16232-16237. https://doi.org/10.1364/OE.23.016232
dc.relation.referencesLee, Y. C., Lai, J. L., & Yu, C. H. (2016, April). The LED driver IC of visible light communication with high data rate and high efficiency. 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 1-4. https://doi.org/10.1109/VLSI-DAT.2016.7482534
dc.relation.referencesLi, Y., Ghassemlooy, Z., Tang, X., Lin, B., & Zhang, Y. (2018). A VLC smartphone camera based indoor positioning system. IEEE Photonics Technology Letters, 30(13), 1171-1174. https://doi.org/10.1109/LPT.2018.2834930
dc.relation.referencesLin, Z., Jiang, M., & Tan, H. Z. (2018, August). Constellation design for complex colour shift keying aided optical OFDM systems. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), 1-5. https://doi.org/10.1109/VTCFall.2018.8691040
dc.relation.referencesLiu, Y., Zheng, C.-T., Li, Y.-T., & Ye, W.-L. (2012). Portable Mbps point-to-point OOK-NRZ visible light communication devices based on white light-emitting diode illuminant. Microwave and Optical Technology Letters, 54(10), 2248-2252. https://doi.org/10.1002/mop.27052
dc.relation.referencesLu, X., Lu, C., Yu, W., Qiao, L., Liang, S., Lau, A. P. T., & Chi, N. (2019). Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system. Optics express, 27(5), 7822-7833. https://doi.org/10.1364/oe.27.007822
dc.relation.referencesMa, H., Lampe, L., & Hranilovic, S. (2013). Integration of indoor visible light and power line communication systems. 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, 291-296. https://people.ece.ubc.ca/lampe/Preprints/2013-VLC-PLC.pdf
dc.relation.referencesMalacara, D. (2002). Color vision and colorimetry: theory and applications (Vol. 2). SPIE Press.
dc.relation.referencesMinisterio de Minas y Energía (2010). Reglamento técnico de iluminación y alumbrado público.
dc.relation.referencesMonteiro, E., & Hranilovic, S. (2014). Design and implementation of color-shift keying for visible light communications. Journal of Lightwave Technology, 32(10), 2053-2060. https://doi.org/10.1109/JLT.2014.2314358
dc.relation.referencesMorgan, D. (1994). A handbook for EMC testing and measurement (Vol. 8). The Institution of Engineering and Technology.
dc.relation.referencesNASA. (2013). Laser communication system sets record with data transmissions to and from moon. https://sservi.nasa.gov/articles/nasa-laser-communication-system-sets-record-with-data-transmissions-to-and-from-moon/
dc.relation.referencesNguyen, D. T., Park, S., Chae, Y., & Park, Y. (2019). VLC/OCC hybrid optical wireless systems for versatile indoor applications. IEEE Access, 7, 22371-22376. https://doi.org/10.1109/ACCESS.2019.2898423
dc.relation.referencesNtogari, G., Kamalakis, T., Walewski, J., & Sphicopoulos, T. (2011). Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone. Journal of Optical Communications and Networking, 3(1), 56-65. https://doi.org/10.1364/JOCN.3.000056
dc.relation.referencesO’Brien, D. C., Faulkner, G., Le Minh, H., Bouchet, O., El Tabach, M., Wolf, M., Walewski, J. W., Randel, S., Nerreter, S. Franke, M. Langer, K.-D., Grubor, J., & Kamalakis, T. (2008). Home access networks using optical wireless trans-mission. 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://doi.org/10.1109/PIMRC.2008.4699864
dc.relation.referencesO’Brien, D. C., Zeng, L., Le-Minh, H., Faulkner, G., Walewski, J. W., & Randel, S. (2008). Visible light communications: Challenges and possibilities. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://www.researchgate.net/profile/Walewski_Joachim/publication/224357544_Visible_light_communications_Challenges_and_possibilities/links/0912f50bf73fa1fa0e000000/Visible-light-communications-Challenges-and-possibilities.pdf
dc.relation.referencesPathak, P. H., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047-2077. https://doi.org/10.1109/COMST.2015.2476474
dc.relation.referencesPham, N. Q., Rachim, V. P., & Chung, W. Y. (2019). High-accuracy VLC-based indoor positioning system using multi-level modulation. Optics Express, 27(5), 7568-7584. https://doi.org/10.1364/OE.27.007568
dc.relation.referencesRahman, M. S., Haque, M. M., & Kim, K.-D. (2011). Indoor positioning by led visible light communication and image sensors. International Journal of Electrical and Computer Engineering, 1(2), 161-170. http://dx.doi.org/10.11591/ijece.v1i2.165
dc.relation.referencesRahman, M. H., Sejan, M. A. S., & Chung, W. Y. (2021, February). Long-Distance Real-Time Rolling Shutter Optical Camera Communication Using MFSK Modulation Technique. In Intelligent Human Computer Interaction: 12th International Conference, IHCI 2020, Daegu, South Korea, November 24–26, 2020, Proceedings, Part II (pp. 53-62). Cham: Springer International Publishing.
dc.relation.referencesRajagopal, S., Roberts, R. D., & Lim, S.-K. (2012). IEEE 802.15. 7 visible light communication: modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72-82. https://doi.org/10.1109/MCOM.2012.6163585
dc.relation.referencesSaeed, N., Guo, S., Park, K. H., Al-Naffouri, T. Y., & Alouini, M. S. (2019). Optical camera communications: Survey, use cases, challenges, and future trends. Physical Communication, 37, 100900. https://doi.org/10.1016/j.phycom.2019.100900
dc.relation.referencesShaaban, K., Shamim, M. H. M., & Abdur-Rouf, K. (2021). Visible light communication for intelligent transportation systems: A review of the latest technologies. Journal of Traffic and Transportation Engineering (English Edition), 8(4), 483-492. https://doi.org/10.1016/j.jtte.2021.04.005
dc.relation.referencesSingh, R. (2015). Physical layer techniques for indoor wireless visible light com-munications [Unpublished doctoral dissertation, University of Sheffield]. https://etheses.whiterose.ac.uk/13818/
dc.relation.referencesTuo, J., Shams, H., & Corbett, B. (2012). Visible light communication by using commercial phosphor based white LEDs. IET Irish Signals and Systems Conference (ISSC 2012), 1-4. https://doi.org/10.1049/ic.2012.0227
dc.relation.referencesUysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., & Udvary, E. (2016). Optical wireless communications: An emerging technology. Springer. https://doi.org/10.1007/978-3-319-30201-0
dc.relation.referencesUysal, M., & Nouri, H. (2014). Optical wireless communications: An emerging technology. 2014 16th International Conference on Transparent Optical Networks (ICTON), 1-7. https://doi.org/10.1109/ICTON.2014.6876267
dc.relation.referencesVLCC. (2007). Visible light communications consortium 2007. http://www.vlcc.net
dc.relation.referencesWang, X., & Shen, J. (2019, May). Machine learning and its applications in visible light communication based indoor positioning. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), 274-277. https://doi.org/10.1109/HPBDIS.2019.8735490
dc.relation.referencesZadobrischi, E., Avătămănitei, S. A., Căilean, A. M., Dimian, M., & Negru, M. (2019, September). Toward a hybrid vehicle communication platform based on VLC and DSRC technologies. 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), 103-107. https://doi.org/10.1109/ICCP48234.2019.8959672
dc.relation.referencesZhang, D.-F., Zhu, Y.-J., & Zhang, Y.-Y. (2013a). Multi-LED phase-shifted OOK modulation based visible light communication systems. IEEE Photonics Technology Letters, 25(23), 2251-2254. https://doi.org/10.1109/LPT.2013.2283583
dc.relation.referencesZhang, W., & Kavehrad, M. (2013b, February). Comparison of VLC-based indoor positioning techniques. Broadband access communication technologies VII, 8645, 86450M. https://doi.org/10.1117/12.2001569
dc.relation.referencesZhang, X., Babar, Z., Petropoulos, P., Haas, H., & Hanzo, L. (2021). The evolution of optical OFDM. IEEE Communications Surveys & Tutorials, 23(3), 1430-1457. https://doi.org/10.1109/COMST.2021.3065907
dc.rightsUniversidad Ean - 2023
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourcehttps://journal.universidadean.edu.co/index.php/Revistao/article/view/3538
dc.subjectOptical wireless communicationeng
dc.subjectVisible Light Communicationeng
dc.subjectVLCeng
dc.subjectLighting emitting diodeeng
dc.subjectphotodiodeeng
dc.subjectmodulationeng
dc.subjectOptical wireless communicationspa
dc.subjectVisible Light Communicationspa
dc.subjectlighting emitting diodespa
dc.subjectphotodiodespa
dc.titleVisible Light Communicationspa
dc.title.translatedComunicación con luz visibleeng
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTREF
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Archivos

Colecciones