Publicación: Visible Light Communication
| dc.contributor.author | Gutiérrez, Juan Felipe | |
| dc.contributor.author | Quintero, Jesús María | |
| dc.date.accessioned | 2023-06-22T00:00:00Z | |
| dc.date.accessioned | 2026-02-18T14:46:41Z | |
| dc.date.available | 2023-06-22T00:00:00Z | |
| dc.date.issued | 2023-06-22 | |
| dc.description.abstract | This work presents a general and introductory review of visible light communication. Visible light communication or VLC refers to wireless communications using a spectral range from 380 to 780 nm for the transmission of information. This part of the optical-electromagnetic range presents some advantages to current wireless radio frequency technologies, as well as several challenges to its development and application. Different visible light communication systems have been developed for indoor, outdoor, domestic, and industrial fields where the luminaire performs two tasks: general lighting and data transmission, since this type of communication has important and valuable applications. Recently, research has been performed to improve each functional block’s performance that composes this kind of communication system. The incursion VLC poses challenges such as LED bandwidth limited by the carrier lifetime, the LED-Driver Linearity, it’s up-link; the general lighting infrastructure to the internet; and the dimming and general lighting performance. It is concluded that the incursion of Visible Light Communication into the already extended spectrum of wireless communications systems will complement and make it less harmful to our environment as international regulation has helped to improve this technology substantially. | spa |
| dc.description.abstract | Este trabajo presenta una revisión general e introductoria de la comunicación de luz visible. La comunicación con luz visible o VLC (por sus siglas en inglés) se refiere a las comunicaciones inalámbricas que utilizan un rango espectral de 380 a 780 nm para la transmisión de información. Esta parte del rango óptico-electromagnético presentaalgunas ventajas para las tecnologías de radiofrecuencia inalámbrica actuales, así como varios desafíos para su desarrollo y aplicación. Se han desarrollado diferentes sistemas de comunicación de luz visible para el ámbito interior, exterior, doméstico e industrial, donde la luminaria realiza dos tareas: iluminación general y transmisión de datos, ya que este tipo de comunicación tiene importantes y valiosas aplicaciones. Recientemente, se han realizado investigaciones para mejorar el desempeño de cada bloque funcional que compone este tipo de sistema de comunicación. El VLC de incursión plantea desafíos como el ancho de banda de LED limitado por la vida útil del operador, la linealidad del controlador de LED, su enlace ascendente; la infraestructura de iluminación general a internet, y el rendimiento de la iluminación general y de atenuación. Se concluye que la incursión del VLC en el ya extendido espectro de los sistemas de comunicaciones inalámbricas complementará y hará menos nociva para nuestro medio ambiente, ya que la regulación internacional ha ayudado a mejorar sustancialmente esta tecnología. | eng |
| dc.format.mimetype | application/pdf | |
| dc.identifier.doi | 10.21158/23823399.v10.n1.2022.3538 | |
| dc.identifier.eissn | 2745-2220 | |
| dc.identifier.issn | 2382-3399 | |
| dc.identifier.uri | https://hdl.handle.net/10882/18801 | |
| dc.identifier.url | https://doi.org/10.21158/23823399.v10.n1.2022.3538 | |
| dc.publisher | Universidad Ean | |
| dc.relation.bitstream | https://journal.universidadean.edu.co/index.php/Revistao/article/download/3538/2346 | |
| dc.relation.citationedition | Avances en tecnología e innovación: Investigaciones y aplicaciones actuales | |
| dc.relation.citationissue | 1 | |
| dc.relation.citationvolume | 10 | |
| dc.relation.ispartofjournal | Revista Ontare | |
| dc.relation.references | Agrawal, G. P. (2003). Fiber-Optic communication systems. Wiley. | |
| dc.relation.references | Afzalan, M., & Jazizadeh, F. (2019). Indoor positioning based on visible light communication: A performance-based survey of real-world prototypes. ACM Computing Surveys (CSUR), 52(2), 1-36. https://dl.acm.org/doi/10.1145/3299769 | |
| dc.relation.references | Allycan Mapunda, G., Ramogomana, R., Marata, L., & Basutli, B. (2020). Indoor Visible Light Communication: A Tutorial and Survey. Wireless Communications and Mobile Computing, 2022, Article ID 8881305. https://doi.org/10.1155/2020/8881305 | |
| dc.relation.references | Alsulami, O. Z., Alresheedi, M. T., & Elmirghani, J. M. (2019, August). Infrared uplink design for visible light communication (VLC) systems with beam steering. In 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC) (pp. 57-60). IEEE. https://doi.org/10.1109/CSE/EUC.2019.00020 | |
| dc.relation.references | Alsulami, O. Z., Saeed, S. O., Mohamed, S. H., El-Gorashi, T. E., Alresheedi, M. T., & Elmirghani, J. M. (2020, July). Shared optical wireless cells for in-cabin aircraft links. In 2020 22nd International Conference on Transparent Optical Networks (ICTON) (pp. 1-5). IEEE. https://doi.org/10.1109/ICTON51198.2020.9203203 | |
| dc.relation.references | Bhalerao, M., Sonavane, S., & Kumar, V. (2013). A survey of wireless communication using visible light. International Journal of Advances in En-gineering & Technology, 5(2), 188-197. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.8028&rep=rep1&type=pdf | |
| dc.relation.references | Boubezari, R., Le Minh, H., Ghassemlooy, Z., & Bouridane, A. (2016). Smart-phone camera based visible light communication. Journal of Lightwave Technology, 34 (17), 4121-4127. | |
| dc.relation.references | Bradby, I. (2008). Practical experience in radio frequency induced ignition risk assessment for comah/dsear compliance. Institution of chemical engineer’s symposium series, 154, 1-15. https://www.icheme.org/media/9756/xx-paper-62.pdf | |
| dc.relation.references | Butala, P. M., Chau, J. C., & Little, T. D. (2012). Metameric modulation for di use visible light communications with constant ambient lighting. In Optical wireless communications (iwow), 2012 international workshop on (pp. 1{3). https://doi.org/10.1109/IWOW.2012.6349697 | |
| dc.relation.references | Chavez-Burbano, P., Rabadan, J., Guerra, V., & Perez-Jimenez, R. (2021). Flickering-free distance-independent modulation scheme for OCC. Electronics, 10(9), 1103. https://www.mdpi.com/2079-9292/10/9/1103 | |
| dc.relation.references | Chen, S.-H., & Chow, C.-W. (2014). Color-shift keying and code-division multiple-access transmission for RGB-LED visible light communications using mobile phone camera. IEEE Photonics Journal, 6(6), 1-6. https://doi.org/10.1109/JPHOT.2014.2374612 | |
| dc.relation.references | Chi, N., Zhou, Y., Wei, Y., & Hu, F. (2020). Visible light communication in 6G: Advances, challenges, and prospects. IEEE Vehicular Technology Magazine, 15(4), 93-102. https://doi.org/10.1109/MVT.2020.3017153 | |
| dc.relation.references | Chow, B. (2015). Assessing the impact of Wi-Fi radio frequency interference on mobile application quality of experience [Unpublished master’s thesis, University of Victoria]. http://hdl.handle.net/1828/6961 | |
| dc.relation.references | The CAMP Vehicle Safety Communications Consortium (2005). Vehicle safety communications project task 3 final report: Identify intelligent vehicle safety applications enabled by DSRC. https://rosap.ntl.bts.gov/view/dot/3925 | |
| dc.relation.references | Deepa, T., & Mathur, H. (2019). Performance analysis of digitized orthogonal frequency division multiplexing system for future wireless communication. Wireless Personal Communications, 109(4), 2239-2250. https://www.springerprofessional.de/en/performance-analysis-of-digitized-orthogonal-frequency-division-/17100402 | |
| dc.relation.references | Dimitrov, S., & Haas, H. (2015). Principles of LED light communications: Towards networked Li-Fi. Cambridge University Press. https://doi.org/10.1017/CBO9781107278929 | |
| dc.relation.references | Durukan, F., Güney, B. M., & Özen, A. (2019, July). A novel CSK modulated OFDM system for visible light communication. 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), 647-650. https://doi.org/10.1109/TSP.2019.8768872 | |
| dc.relation.references | El Gamal, M. M., Maheswar, R., Fayed, H. A., Aly, M. H., Ismail, N. E., & Mokhtar, A. (2021). Dark light visible light communication positioning system with received signal strength technique. Optical and Quantum Electronics, 53(9), 1-16. https://www.springerprofessional.de/en/dark-light-visible-light-communication-positioning-system-with-r/19610196 | |
| dc.relation.references | Elgala, H., Mesleh, R., & Haas, H. (2011). Indoor optical wireless communication: potential and state-of-the-art. IEEE Communications Magazine, 49 (9), 56-62. https://doi.org/10.1109/MCOM.2011.6011734 | |
| dc.relation.references | Elgala, H., Mesleh, R., Haas, H., & Pricope, B. (2007). OFDM visible light wireless communication based on white LEDs. 2007 IEEE 65th Vehiclar Technology Conference-VTC2007-Spring,007. Vtc2007-18. https://doi.org/10.1109/VETECS.2007.451 | |
| dc.relation.references | Fattal, D., Fiorentino, M., Tan, M., Houng, D., Wang, S., & Beausoleil, R. G. (2008). Design of an efficient light-emitting diode with 10 GHz modulation bandwidth. Applied Physics Letters, 93(24), 243501. https://doi.org/10.1063/1.3046100 Gao, S. (2013). Performance study for indoor visible light communication systems [Unpublished master’s thesis, University of Ottawa]. https://ruor.uottawa.ca/bitstream/10393/23986/1/Gao_Shuo_2013_Thesis.pdf | |
| dc.relation.references | Graeme, J. (1995). Photodiode Amplifiers: OP AMP Solutions. McGraw-Hill, Inc. | |
| dc.relation.references | Grubor, J., Randel, S., Langer, K.-D., & Walewski, J. (2008). Bandwidth-efficient indoor optical wireless communications with white light-emitting diodes. 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing. https://doi.org/10.1109/CSNDSP.2008.4610769 | |
| dc.relation.references | Guo, J. N., Zhang, J., Xin, G., & Li, L. (2020, December). Constant transmission efficiency dimming control scheme for VLC systems. Photonics, 8(1), 7. https://doi.org/10.3390/photonics8010007 | |
| dc.relation.references | Gutierrez, J. F. (2018). Diseño e implementación de dos sistemas de comunicación con luz visible mediante las modulaciones OOK y CSK para análisis de desempeño de transmisión de datos e iluminación. [Unpublished master’s thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69483 | |
| dc.relation.references | Halsall, F. (2006). Computer networking and the Internet. Pearson Education India. | |
| dc.relation.references | IEEE Standards Association. (2019). IEEE Standard for Local and metropolitan area networks—Part 15.7: Short-Range Optical Wireless Communications (IEEE Std 802.15.7-2018, Revision of IEEE Std 802.15.7-2011) (pp. 1-407). https://ieeexplore.ieee.org/document/8697198 | |
| dc.relation.references | Jani, M., Garg, P., & Gupta, A. (2019). Performance analysis of a mixed cooperative PLC–VLC system for indoor communication systems. IEEE Systems Journal, 14(1), 469-476. https://doi.org/10.1109/JSYST.2019.2911717 | |
| dc.relation.references | Kahn, J. M., & Barry, J. R. (1997). Wireless infrared communications. Proceedings of the IEEE , 85(2), 265-298. https://ee.stanford.edu/~jmk/pubs/proc.ieee.2.97.pdf | |
| dc.relation.references | Khalid, A., Cossu, G., Corsini, R., Choudhury, P., & Ciaramella, E. (2012). 1-GB/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation. IEEE Photonics Journal, 4(5), 1465-1473. https://doi.org/10.1109/JPHOT.2012.2210397 | |
| dc.relation.references | Kumari, M., Sharma, R., & Sheetal, A. (2021). A hybrid next-generation passive optical network and visible light communication for future hospital applications. Optik, 242, 166978. https://doi.org/10.1016/j.ijleo.2021.166978 | |
| dc.relation.references | Lapinsky, S. E., & Easty, A. C. (2006). Electromagnetic interference in critical care. Journal of Critical Care, 21(3), 267-270. https://doi.org/10.1016/j.jcrc.2006.03.010 | |
| dc.relation.references | Le Minh, H., O’Brien, D., & Faulkner, G. (2010). A gigabit/s indoor optical wireless system for home access networks. 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010), 532-536. https://doi.org/10.1109/CSNDSP16145.2010.5580358 | |
| dc.relation.references | Lee, C., Zhang, C., Cantore, M., Farrell, R. M., Oh, S. H., Margalith, T., Speck, J. S., Shuji, N., Bowers, J. E. & DenBaars, S. P. (2015). 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. Optics express, 23(12), 16232-16237. https://doi.org/10.1364/OE.23.016232 | |
| dc.relation.references | Lee, Y. C., Lai, J. L., & Yu, C. H. (2016, April). The LED driver IC of visible light communication with high data rate and high efficiency. 2016 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 1-4. https://doi.org/10.1109/VLSI-DAT.2016.7482534 | |
| dc.relation.references | Li, Y., Ghassemlooy, Z., Tang, X., Lin, B., & Zhang, Y. (2018). A VLC smartphone camera based indoor positioning system. IEEE Photonics Technology Letters, 30(13), 1171-1174. https://doi.org/10.1109/LPT.2018.2834930 | |
| dc.relation.references | Lin, Z., Jiang, M., & Tan, H. Z. (2018, August). Constellation design for complex colour shift keying aided optical OFDM systems. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), 1-5. https://doi.org/10.1109/VTCFall.2018.8691040 | |
| dc.relation.references | Liu, Y., Zheng, C.-T., Li, Y.-T., & Ye, W.-L. (2012). Portable Mbps point-to-point OOK-NRZ visible light communication devices based on white light-emitting diode illuminant. Microwave and Optical Technology Letters, 54(10), 2248-2252. https://doi.org/10.1002/mop.27052 | |
| dc.relation.references | Lu, X., Lu, C., Yu, W., Qiao, L., Liang, S., Lau, A. P. T., & Chi, N. (2019). Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system. Optics express, 27(5), 7822-7833. https://doi.org/10.1364/oe.27.007822 | |
| dc.relation.references | Ma, H., Lampe, L., & Hranilovic, S. (2013). Integration of indoor visible light and power line communication systems. 2013 IEEE 17th International Symposium on Power Line Communications and Its Applications, 291-296. https://people.ece.ubc.ca/lampe/Preprints/2013-VLC-PLC.pdf | |
| dc.relation.references | Malacara, D. (2002). Color vision and colorimetry: theory and applications (Vol. 2). SPIE Press. | |
| dc.relation.references | Ministerio de Minas y Energía (2010). Reglamento técnico de iluminación y alumbrado público. | |
| dc.relation.references | Monteiro, E., & Hranilovic, S. (2014). Design and implementation of color-shift keying for visible light communications. Journal of Lightwave Technology, 32(10), 2053-2060. https://doi.org/10.1109/JLT.2014.2314358 | |
| dc.relation.references | Morgan, D. (1994). A handbook for EMC testing and measurement (Vol. 8). The Institution of Engineering and Technology. | |
| dc.relation.references | NASA. (2013). Laser communication system sets record with data transmissions to and from moon. https://sservi.nasa.gov/articles/nasa-laser-communication-system-sets-record-with-data-transmissions-to-and-from-moon/ | |
| dc.relation.references | Nguyen, D. T., Park, S., Chae, Y., & Park, Y. (2019). VLC/OCC hybrid optical wireless systems for versatile indoor applications. IEEE Access, 7, 22371-22376. https://doi.org/10.1109/ACCESS.2019.2898423 | |
| dc.relation.references | Ntogari, G., Kamalakis, T., Walewski, J., & Sphicopoulos, T. (2011). Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone. Journal of Optical Communications and Networking, 3(1), 56-65. https://doi.org/10.1364/JOCN.3.000056 | |
| dc.relation.references | O’Brien, D. C., Faulkner, G., Le Minh, H., Bouchet, O., El Tabach, M., Wolf, M., Walewski, J. W., Randel, S., Nerreter, S. Franke, M. Langer, K.-D., Grubor, J., & Kamalakis, T. (2008). Home access networks using optical wireless trans-mission. 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://doi.org/10.1109/PIMRC.2008.4699864 | |
| dc.relation.references | O’Brien, D. C., Zeng, L., Le-Minh, H., Faulkner, G., Walewski, J. W., & Randel, S. (2008). Visible light communications: Challenges and possibilities. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-5. https://www.researchgate.net/profile/Walewski_Joachim/publication/224357544_Visible_light_communications_Challenges_and_possibilities/links/0912f50bf73fa1fa0e000000/Visible-light-communications-Challenges-and-possibilities.pdf | |
| dc.relation.references | Pathak, P. H., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys & Tutorials, 17(4), 2047-2077. https://doi.org/10.1109/COMST.2015.2476474 | |
| dc.relation.references | Pham, N. Q., Rachim, V. P., & Chung, W. Y. (2019). High-accuracy VLC-based indoor positioning system using multi-level modulation. Optics Express, 27(5), 7568-7584. https://doi.org/10.1364/OE.27.007568 | |
| dc.relation.references | Rahman, M. S., Haque, M. M., & Kim, K.-D. (2011). Indoor positioning by led visible light communication and image sensors. International Journal of Electrical and Computer Engineering, 1(2), 161-170. http://dx.doi.org/10.11591/ijece.v1i2.165 | |
| dc.relation.references | Rahman, M. H., Sejan, M. A. S., & Chung, W. Y. (2021, February). Long-Distance Real-Time Rolling Shutter Optical Camera Communication Using MFSK Modulation Technique. In Intelligent Human Computer Interaction: 12th International Conference, IHCI 2020, Daegu, South Korea, November 24–26, 2020, Proceedings, Part II (pp. 53-62). Cham: Springer International Publishing. | |
| dc.relation.references | Rajagopal, S., Roberts, R. D., & Lim, S.-K. (2012). IEEE 802.15. 7 visible light communication: modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72-82. https://doi.org/10.1109/MCOM.2012.6163585 | |
| dc.relation.references | Saeed, N., Guo, S., Park, K. H., Al-Naffouri, T. Y., & Alouini, M. S. (2019). Optical camera communications: Survey, use cases, challenges, and future trends. Physical Communication, 37, 100900. https://doi.org/10.1016/j.phycom.2019.100900 | |
| dc.relation.references | Shaaban, K., Shamim, M. H. M., & Abdur-Rouf, K. (2021). Visible light communication for intelligent transportation systems: A review of the latest technologies. Journal of Traffic and Transportation Engineering (English Edition), 8(4), 483-492. https://doi.org/10.1016/j.jtte.2021.04.005 | |
| dc.relation.references | Singh, R. (2015). Physical layer techniques for indoor wireless visible light com-munications [Unpublished doctoral dissertation, University of Sheffield]. https://etheses.whiterose.ac.uk/13818/ | |
| dc.relation.references | Tuo, J., Shams, H., & Corbett, B. (2012). Visible light communication by using commercial phosphor based white LEDs. IET Irish Signals and Systems Conference (ISSC 2012), 1-4. https://doi.org/10.1049/ic.2012.0227 | |
| dc.relation.references | Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., & Udvary, E. (2016). Optical wireless communications: An emerging technology. Springer. https://doi.org/10.1007/978-3-319-30201-0 | |
| dc.relation.references | Uysal, M., & Nouri, H. (2014). Optical wireless communications: An emerging technology. 2014 16th International Conference on Transparent Optical Networks (ICTON), 1-7. https://doi.org/10.1109/ICTON.2014.6876267 | |
| dc.relation.references | VLCC. (2007). Visible light communications consortium 2007. http://www.vlcc.net | |
| dc.relation.references | Wang, X., & Shen, J. (2019, May). Machine learning and its applications in visible light communication based indoor positioning. 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), 274-277. https://doi.org/10.1109/HPBDIS.2019.8735490 | |
| dc.relation.references | Zadobrischi, E., Avătămănitei, S. A., Căilean, A. M., Dimian, M., & Negru, M. (2019, September). Toward a hybrid vehicle communication platform based on VLC and DSRC technologies. 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), 103-107. https://doi.org/10.1109/ICCP48234.2019.8959672 | |
| dc.relation.references | Zhang, D.-F., Zhu, Y.-J., & Zhang, Y.-Y. (2013a). Multi-LED phase-shifted OOK modulation based visible light communication systems. IEEE Photonics Technology Letters, 25(23), 2251-2254. https://doi.org/10.1109/LPT.2013.2283583 | |
| dc.relation.references | Zhang, W., & Kavehrad, M. (2013b, February). Comparison of VLC-based indoor positioning techniques. Broadband access communication technologies VII, 8645, 86450M. https://doi.org/10.1117/12.2001569 | |
| dc.relation.references | Zhang, X., Babar, Z., Petropoulos, P., Haas, H., & Hanzo, L. (2021). The evolution of optical OFDM. IEEE Communications Surveys & Tutorials, 23(3), 1430-1457. https://doi.org/10.1109/COMST.2021.3065907 | |
| dc.rights | Universidad Ean - 2023 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
| dc.source | https://journal.universidadean.edu.co/index.php/Revistao/article/view/3538 | |
| dc.subject | Optical wireless communication | eng |
| dc.subject | Visible Light Communication | eng |
| dc.subject | VLC | eng |
| dc.subject | Lighting emitting diode | eng |
| dc.subject | photodiode | eng |
| dc.subject | modulation | eng |
| dc.subject | Optical wireless communication | spa |
| dc.subject | Visible Light Communication | spa |
| dc.subject | lighting emitting diode | spa |
| dc.subject | photodiode | spa |
| dc.title | Visible Light Communication | spa |
| dc.title.translated | Comunicación con luz visible | eng |
| dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |
