Publicación: Experimentos con redes neuronales recurrentes LSTM para la predicción del nivel de glucosa de pacientes con diabetes
| dc.contributor.author | Mosquera Ruiz, Anderson | |
| dc.date.accessioned | 2023-06-07T00:00:00Z | |
| dc.date.accessioned | 2026-02-18T14:46:44Z | |
| dc.date.available | 2023-06-07T00:00:00Z | |
| dc.date.issued | 2023-06-07 | |
| dc.description.abstract | La diabetes es una enfermedad en la cual el cuerpo no procesa de manera adecuada la glucosa; el tratamiento para esta enfermedad se basa en el autocuidado del paciente, sus tendencias dietarias, el ejercicio y la administración de insulina. Predecir los niveles de glucosa futuros puede ser de gran ayuda para que el paciente y el personal médico que lo atiende determinen estrategias que mantengan sus niveles de glucosa en un rango que no sea peligroso. Las técnicas de aprendizaje profundo, entre otras cosas, permiten predecir valores en una serie temporal. En la actualidad, la técnica más usada es la predicción mediante redes neuronales recurrentes tipo LSTM. Este artículo se propone realizar experimentos variando los parámetros de redes neuronales tipo LSTM para determinar si dichos parámetros tienen alguna influencia en la precisión de la predicción del modelo. | spa |
| dc.description.abstract | Diabetes is a disease in which the body does not properly process glucose; Treatment for this disease is based on the patient's self-care, dietary tendencies, exercise, and insulin administration. Predicting future glucose levels can help the patient and their medical staff determine strategies to keep their glucose levels in a range that is not dangerous. Deep learning techniques, among other things, can predict values in a time series, currently the most widely used of these techniques is LSTM recurrent neural networks. This paper performs experiments varying the parameters of LSTM neural networks to determine whether these parameters have any influence on the accuracy of the model's prediction. | eng |
| dc.format.mimetype | application/pdf | |
| dc.identifier.doi | 10.21158/23823399.v11.n1.2023.3688 | |
| dc.identifier.eissn | 2745-2220 | |
| dc.identifier.issn | 2382-3399 | |
| dc.identifier.uri | https://hdl.handle.net/10882/18805 | |
| dc.identifier.url | https://doi.org/10.21158/23823399.v11.n1.2023.3688 | |
| dc.publisher | Universidad Ean | |
| dc.relation.bitstream | https://journal.universidadean.edu.co/index.php/Revistao/article/download/3688/2406 | |
| dc.relation.citationedition | Perspectivas de ingeniería: Tecnología para el futuro. | |
| dc.relation.citationissue | 1 | |
| dc.relation.citationvolume | 11 | |
| dc.relation.ispartofjournal | Revista Ontare | |
| dc.relation.references | Alfian, A., Syafrudin, M., Anshari, M., Benes, F., Dwi, F. T., Fahrurrozi, I., Hidayatullah A. F. & Rhee, J. (2020). Blood glucose prediction model for type 1 diabetes based on artificial neural network with time-domain features. Biocybernetics and Biomedical Engineering, 40(4), 1586-1599. https://doi.org/10.1016/j.bbe.2020.10.004 | |
| dc.relation.references | Amir, T. (2022). Setup Neural Networks Hyperparameters for Best Results. LinkedIn. https://www.linkedin.com/pulse/setup-neural-networks-hyperparameters-best-results-takbiri | |
| dc.relation.references | Anderson, S. M., Raghinaru, D., Pinsker, J. E., Boscari, F., Renard, E., Buckingham, B. A., Nimri, R., Doyle, F. J., Brown, S. A., Keith-Hynes, P., Breton, M. D., Chernavvsky, D., Bevier, D. W., Bradley, P. | |
| dc.relation.references | Athiyarath, S., Paul, M. & Krishnaswamy, S. (2020). A comparative study and analysis of time series forecasting techniques. SN Computer Science, 1(175). https://doi.org/10.1007/s42979-020-00180-5 | |
| dc.relation.references | Bruttomesso, D., Favero, S., Calore, R., Cobelli, C., Avogaro, A. & Farret, A. (2016). Multinational Home Use of Closed-Loop Control Is Safe and Effective. Diabetes Care, 39(7), 1143-1150. https://doi.org/10.2337/dc15-2468 | |
| dc.relation.references | Bando, H., Ebe, K., Kato, Y., Bando, M. & Yonei, Y. (2018). Investigation of blood glucose profile by continuous glucose monitoring (CGM). Endocrinology Research and Metabolism, 2(1:10), 1-4. https://www.imedpub.com/articles/investigation-of-blood-glucose-profile-by-continuous-glucose-monitoring-cgm.pdf | |
| dc.relation.references | Blázquez-García, A., Conde, A., Mori, U. & Lozano, J. A. (2021). A review on outlier/anomaly detection in time series data. ACM Computing Surveys, 54(3), 1-33. https://doi.org/10.1145/3444690 | |
| dc.relation.references | Chou, J. S. & Tran, D. S. (2018). Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy, 165(part b), 709-726. https://doi.org/10.1016/j.energy.2018.09.144 | |
| dc.relation.references | Colah’s Blog. (2015). Understanding LSTM Networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/ | |
| dc.relation.references | Comito, C. & Pizzuti, C. (2022). Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review. Artificial Intelligence in Medicine, 128, 102286. https://doi.org/10.1016/j.artmed.2022.102286 | |
| dc.relation.references | Contreras, I. & Vehi, J. (2018). Artificial intelligence for diabetes management and decision support: literature review. Journal of Medical Internet Research, 20(5), e10775. https://doi.org/10.2196/10775 | |
| dc.relation.references | Dunning, T. (2012). Diabetes education: Art, science and evidence. John Wiley y Sons, Incorporated. | |
| dc.relation.references | Fagherazzi, G. & Ravaud, P. (2019). Digital diabetes: perspectives for diabetes prevention, management and research. Diabetes & Metabolism, 45(4), 322-329. https://doi.org/10.1016/j.diabet.2018.08.012 | |
| dc.relation.references | Fiorini, S., Martini, C., Malpassi, D., Cordera, R., Maggi, D., Verri, A. & Barla, A. (2017). Data-driven strategies for robust forecast of continuous glucose monitoring time-series. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea (South), pp. 1680-1683https://doi.org/10.1109/EMBC.2017.8037164 | |
| dc.relation.references | Fonseca, V. (2010). Diabetes: improving patient care. Oxford University Press, Incorporated. | |
| dc.relation.references | García-Jaramillo, M., Luque, C. & León-Vargas, F. (2023). Machine learning and deep learning techniques applied to diabetes research: a bibliometric analysis. Journal of Diabetes Science and Technology, 18(2), 287-301. https://doi.org/10.1177/19322968231215350 | |
| dc.relation.references | Holt, R. I., Cockram, C., Flyvbjerg, A. & Goldstein, B. J. (2017). Textbook of diabetes. John Wiley y Sons, Incorporated. | |
| dc.relation.references | Holt, T. & Kumar, S. (2015). Abc of diabetes. John Wiley y Sons, Incorporated. | |
| dc.relation.references | Islam, S., Hossain, E., Rahman, A., Hossain, M. S. & Andersson, K. (2020). A review on recent advancements in FOREX currency prediction. Algorithms, 13(8), 186. https://doi.org/10.3390/A13080186 | |
| dc.relation.references | Jaeb Center for Health Research. (2015). Pilot study 3 of outpatient control-to-range: safety and efficacy with day-and-night in-home use (CTR3). ID: NCT02137512. https://www.clinicaltrials.gov/study/NCT02137512 | |
| dc.relation.references | Joshi, A., Jain, P. & Mohanty, S. P. (2021). Everything you wanted to know about continuous glucose monitoring. IEEE Consumer Electronics Magazine, 10(6), 61-66. https://ieeexplore.ieee.org/document/9415429 | |
| dc.relation.references | Kang, Q., Chen, E., Li, C., Luo, H. & Liu, Y. (2023). Attention-based LSTM predictive model for the attitude and position of shield machine in tunneling. Underground Space, 13, 335-350. https://doi.org/10.1016/j.undsp.2023.05.006 | |
| dc.relation.references | Lara-Benítez, P., Carranza-García, M. & Riquelme, J. C. (2021). An experimental review on deep learning architectures for time series forecasting. International Journal of Neural Systems, 31(3), 2130001. https://doi.org/10.1142/S0129065721300011 | |
| dc.relation.references | Levy, D. (2016). Type 1 diabetes. (2nd ed.). Oxford University Press, Incorporated. | |
| dc.relation.references | Martinsson, J., Schliep, A., Eliasson, B. & Mogren, O. (2020). Blood glucose prediction with variance estimation using recurrent neural networks. Journal of Healthcare Informatics Research, 4, 1-18. https://doi.org/10.1007/s41666-019-00059-y | |
| dc.relation.references | Mosquera-Ruiz, A. y García-Jaramillo, M. (2022, septiembre 13-16). Diseño de un prototipo para la generación de alarmas a partir del análisis de tendencias del perfil glucémico de un grupo de pacientes con diabetes. Nuevas realidades para la educación en ingeniería: Currículo, tecnología, medio ambiente y desarrollo, Cartagena, Colombia, ACOFI EIEI. https://acofipapers.org/index.php/eiei/article/view/2246/1880 | |
| dc.relation.references | Mosquera-Ruiz, A. (2023). Diseño de un sistema para la visualización del nivel de glucosa de un grupo de pacientes con diabetes. [Trabajo de grado]. Universidad EAN. http://hdl.handle.net/10882/12769 | |
| dc.relation.references | Oh, S., Byon, Y. J., Jang, K. & Yeo, H. (2015). Short-term travel-time prediction on highway: a review of the data-driven approach. Transport Reviews, 35(1), 4-32. https://doi.org/10.1080/01441647.2014.992496 | |
| dc.relation.references | Sharma, E. (2018). Energy forecasting based on predictive data mining techniques in smart energy grids. Energy Informatics, 1(suppl. 1):4, 367-428. https://doi.org/10.1186/s42162-018-0048-9 | |
| dc.relation.references | Sharma, S. (2017). Activation Functions in Neural Networks. Towards Data Science. https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6 | |
| dc.relation.references | Shaw, K. M. & Cummings, M. H. (2012). Diabetes: chronic complications. (2nd, ed.). John Wiley y Sons, Incorporated. | |
| dc.relation.references | Zainuddin, Z., Ong, P. & Cemal, A. (2009). A neural network approach in predicting the blood glucose level for diabetic patients. International Journal of Computational Intelligence, 5(1). https://www.researchgate.net/publication/242595444_A_Neural_Network_Approach_in_Predicting_the_Blood_Glucose_Level_for_Diabetic_Patients | |
| dc.relation.references | Zhu, T., Li, K., Chen, J., Herrero, P. & Georgiu, P. (2020). Dilated recurrent neural networks for glucose forecasting in type 1 diabetes. Journal of Healthcare Informatics Research, 4, 308-324. https://doi.org/10.1007/s41666-020-00068-2 | |
| dc.rights | Anderson Mosquera Ruiz - 2024 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
| dc.source | https://journal.universidadean.edu.co/index.php/Revistao/article/view/3688 | |
| dc.subject | Redes neuronales | spa |
| dc.subject | Trastornos del metabolismo | spa |
| dc.subject | Diabetes | spa |
| dc.subject | Glucosa en la sangre | spa |
| dc.subject | Prevención y control | spa |
| dc.title | Experimentos con redes neuronales recurrentes LSTM para la predicción del nivel de glucosa de pacientes con diabetes | spa |
| dc.title.translated | Experiments with LSTM recurrent neural networks for glucose level prediction in patients with diabetes | eng |
| dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ARTREF | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication |
