Publicación:
Propuesta de un bio-polímero reforzado con fibras de cáñamo

dc.contributor.advisorRivera Chacón, Lina María
dc.contributor.authorQuineme Velosa, Tomás Santiago
dc.creator.id1020844997
dc.date.accessioned2025-11-23T23:11:46Z
dc.date.issued2025-11-06
dc.description.abstractUn polímero es una molécula grande configurada por unidades ordenadas denominadas monómeros: Se encuentran acopladas entre sí por medios de enlaces químicos, formando cadenas o redes. Disponen de una desarrollada gama de aplicaciones en el sector industrial, en áreas como: Embalaje, construcción, electrónica y medicina. Debido, a que se encuentran en diversidad de materiales naturales y sintéticos, incluidos plásticos, caucho y proteínas. Además, se eligen por su durabilidad; resistencia al calor y a productos químicos. Por otra parte, los polímeros a base de cáñamo son un tipo de biopolímero que se fabrica a partir de plantas de marihuana, estos biopolímeros han citado curiosidad en los últimos años debido a su relación intrínseca con el medio ambiente y su potencial para la fabricación sostenible. Por esta razón, el objetivo es potenciar la implementación de la percepción de los posibles consumidores sobre la fibra del cáñamo, como alternativa de materia prima sostenible y sustentable para la elaboración de biopolímeros. Además, la investigación desglosa el cáñamo: Para conocer su potencial en la industria de materias primas renovables, en relación con el análisis de viabilidad de su uso en los procesos de producción de polímeros.spa
dc.description.abstractA polymer is a large molecule made up of ordered units called monomers. These monomers are linked together by chemical bonds, forming chains or networks. Polymers have a wide range of applications in the industrial sector, in areas such as packaging, construction, electronics, and medicine. This is because they are found in a variety of natural and synthetic materials, including plastics, rubber, and proteins. They are also chosen for their durability, heat resistance, and chemical resistance. Hemp-based polymers, a type of biopolymer manufactured from cannabis plants, have garnered interest in recent years due to their inherent environmental benefits and their potential for sustainable manufacturing. Therefore, the objective is to enhance the perception of hemp fiber among potential consumers as a sustainable raw material alternative for biopolymer production. Furthermore, the research breaks down hemp: To understand its potential in the renewable raw materials industry, in relation to the feasibility analysis of its use in polymer production processes.eng
dc.description.degreelevelTrabajo de gradospa
dc.description.degreenameIngeniero de Producciónspa
dc.description.tableofcontentsResumen...............................................................................................................................5 Introducción .........................................................................................................................7 Objetivo General ................................................................................................................10 Objetivos Específicos .....................................................................................................10 Definición Del Problema....................................................................................................11 Justificación........................................................................................................................13 Análisis De Requerimientos...............................................................................................15 Intención Del Producto ...................................................................................................15 Los Polímeros.................................................................................................................16 Los Polímeros Sintéticos.............................................................................................16 Fibras Naturales..............................................................................................................18 Algodón.......................................................................................................................18 Lino .............................................................................................................................18 Yute .............................................................................................................................19 Cáñamo.......................................................................................................................19 Biopolimero....................................................................................................................19 Material Compuesto........................................................................................................19 Parámetros De Diseño. ...................................................................................................20 Características Del Producto .....................................................................................21 Marco De Referencia .........................................................................................................24 Análisis De Restricciones...................................................................................................26 Aspectos Económicos ........................................................................................................26 Aspectos Legales.........................................................................................................27 Aspectos Socioculturales.............................................................................................28 Aspectos Ambientales..................................................................................................29 Metodología .......................................................................................................................30 3 Revisión Literaria ...........................................................................................................30 Cadena Productiva De La Planta De Cannabis.........................................................33 Cadena Productiva De La Fibra De Cáñamo ............................................................39 Diseño Experimental.......................................................................................................40 Preparación Del Material Compuesto........................................................................41 Aplicaciones Potenciales ................................................................................................46 Análisis De Costos.............................................................................................................48 Análisis De Resultados.......................................................................................................51 Conclusión..........................................................................................................................53 Referencias.................................................................................................................54spa
dc.formatpdf
dc.format.extent59 páginas
dc.format.mediumRecurso electrónicospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad Eanspa
dc.identifier.localBDM-FIP
dc.identifier.reponamereponame:Repositorio Institucional Biblioteca Digital Minerva
dc.identifier.repourlrepourl:https://repository.universidadean.edu.co/
dc.identifier.urihttps://hdl.handle.net/10882/15405
dc.language.isospa
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programIngeniería de Producción
dc.relation.referencesBeltrán, M. (2011). Tipos de plásticos, aditivación y mezclado [ Tesis de doctorado, Universidad Alicante]. Repositorio Institucional de la Universidad de Alicante. oai: rua.ua.es:10045/16893 Cómo los plásticos pasaron de ser una promesa de utopía futurista a la actual pesadilla ecológica. (2019, junio 20). BBC. Contreras, L., Vargas, L. y Ríos, R. (2018). Procesos de fabricación en polímeros y cerámicos. Bogotá D.C., Colombia: Ediciones de la U. Gim Huay Neo. (2022, marzo 3). Contaminación por plásticos: Por qué necesitamos urgentemente un tratado mundial comprensivo. Foro Económico Mundial. https://es.weforum.org/agenda/2022/03/contaminacion-por-plasticos-por-que-necesitamosurgentemente-un-tratado-mundial-exhaustivo/ Kalpakjian, S., Schmid, S. R. (2014). Manufactura, ingeniería y tecnología: tecnología de materiales. Pearson Educación. https://www-ebooks7-24- com.bdbiblioteca.universidadean.edu.co/?il=3641 Monosalva, J., Dávila, J. y Quintero, J. (2022). Estudio holístico de la producción de papel a partir de cáñamo industrial en el contexto colombiano. Revista Mutis, 10(2), 51–69. https://doi.org/10.21789/22561498.1721 Pietro, R. (2022). Contaminación ambiental por plásticos durante la pandemia y sus efectos en la salud humana. Revista Colombiana de Cirugía, 38, 22-29. https://doi.org/10.30944/20117582.2203 55 Porte, C. (2022). Impacto de micro- y nano-plásticos en salud ambiental: ¿una amenaza? Revista de Salud Ambiental, 22, 98-99. https://ojs.diffundit.com/index.php/rsa/article/view/1200/1147 Sabino, C. (1996). Cómo hacer una tesis y elaborar todo tipo de escritos. Bogotá D.C., Colombia: Panamericana Editorial Ltda. Vallejos, M. (2006). Aprovechamiento integral del cannabis sativa [ Tesis de doctorado, Universitat de Girona] TDX. http://hdl.handle.net/10803/7793 Bokobza, L. (2005). Natural Fibers Reinforcing Polypropylene. In Natural Fibers, Biopolymers, and Biocomposites (pp. 111-123). CRC Press. El Mansory, M. S., et al. (2017). Fabrication and Characterization of Polypropylene Composites Reinforced with Untreated and Alkali Treated Hemp Fiber. Polymer Composites, 38(5), 999-1007. Thwe, M. M., & Liao, K. (2002). Durability of Bamboo-glass Fiber Reinforced Polymer Matrix Hybrid Composites. Composites Science and Technology, 62(4), 437-449. Saba, N., et al. (2016). Mechanical Properties of Banana Fiber Reinforced Polymer Composite: A Review. Journal of Reinforced Plastics and Composites, 35(10), 797-813. Abdul Khalil, H. P. S., Ismail, H., & Rozman, H. D. (2011). The effect of acetylation on interfacial shear strength between plant fibres and various matrix resins. Composites Part B: Engineering, 42(7), 1876-1880. Baley, C. (2002). Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Composite Structures, 57(1-4), 59-68. 56 Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(3), 504-515. Boopalan, M., Niranjanaa, M., & Umapathy, M. J. (2014). Characterization of hybrid composites made of natural fibers. Procedia Engineering, 97, 1132-1140. Bose, S., & Bandyopadhyay, A. (2008). Effect of processing parameters and structural integrity of hydroxyapatite coated polyethylene coated calcium phosphate coated magnesium based biocomposites. Acta Biomaterialia, 4(5), 1475-1485. Cao, Y., Shibata, S., & Fukumoto, I. (2007). Physical and mechanical properties of kenaf fibers. Composites Part A: Applied Science and Manufacturing, 38(6), 1445-1454. Chen, F., Wang, L., Xie, Y., & Zhou, D. (2013). Mechanical properties of pineapple leaf fiber reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 46, 10-19. Chou, T. W., & Li, Z. M. (2002). Mechanical properties of continuous carbon fiber reinforced polypropylene composites: effect of matrix modification. Journal of Applied Polymer Science, 83(8), 1709-1718. El-Sabbagh, A., Wahab, M. A., & El-Shekeil, Y. A. (2013). Effect of silane coupling agent on the mechanical and thermal properties of date palm fibers-reinforced polypropylene composites. Polymer Composites, 34(2), 181-188. . Fazita, M. R. N., Sapuan, S. M., & Ibrahim, R. (2013). Physical and mechanical properties of injection moulded polypropylene composites reinforced with coconut shell powder. Materials & Design, 45, 343-347. 57 Frias, M., & Rocha, F. (2011). Mechanical behaviour of sisal fibre reinforced cement-based materials. Construction and Building Materials, 25(7), 3037-3046. George, J., Sreekala, M. S., & Thomas, S. (2001). A review on interface modification and characterization of natural fiber reinforced plastic composites. Polymer Engineering & Science, 41(9), 1471-1485. Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2008). Chopped glass and recycled newspaper as reinforcement fibers in injection molded polypropylene composites: a comparative study. Journal of Applied Polymer Science, 107(2), 952-963. Islam, M. N., Rahman, M. M., Khan, R. A., & Akter, M. (2014). Development and properties evaluation of jute reinforced polypropylene composites. Journal of Materials and Environmental Science, 5(1), 1-11. Jumaidin, R., Khalina, A., Ismail, H., & Azhar, A. (2014). The effect of alkaline treatment on mechanical properties of woven kenaf fiber reinforced polypropylene composites. Applied Mechanics and Materials, 695, 193-198. Kalaitzakis, N., Lappas, A. A., & Karabelas, A. J. (2012). Mechanical properties of natural fiber reinforced polypropylene composites: a comparative study. Journal of Materials Science, 47(10), 4422-4435. . Kalaprasad, G., & Joseph, K. (2016). Effect of fiber surface treatment on the properties of sisal fiber-reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 35(2), 135-144. Khan, M. A., Islam, M. R., & Hossain, M. S. (2012). Development of jute fiber reinforced polypropylene composites: effect of fiber loading and compatibilizer. Journal of Reinforced Plastics and Composites, 31(8), 531-539. 58 Khalil, H. A., Saurabh, C. K., & Ismail, H. (2012). Mechanical properties of kenaf fiber reinforced polymer composite. Materials & Design, 36, fibre reinforced polymer composites. Materials Science and Engineering: C, 32(7), 1734-1741. Lertwitayaprasit, Y., Matuana, L. M., & Pillai, K. M. (2005). Weatherability and mechanical property deterioration of wood–plastic composites exposed to natural weathering. Polymer Degradation and Stability, 88(1), 234-242. Li, Y., Mai, Y. W., & Ye, L. (2000). Sisal fibre and its composites: a review of recent developments. Composites Science and Technology, 60(11), 2037-2055. Lomelí-Ramírez, M. G., Ponce-Muñoz, M. L., Vega-Baudrit, J. R., & Canché-Escamilla, G. (2014). Effect of fiber treatment on the mechanical properties of ramie fiberpolypropylene composites. Journal of Applied Polymer Science, 131(19) Lu, J. Z., & Drzal, L. T. (2010). Multiscale control of interfaces in natural fiber composites. Composites Science and Technology, 70(16), 2223-2236 Mahdavi, S., & Clouston, P. (2010). Durability of kenaf and hybrid fibre reinforced concrete. Construction and Building Materials, 24(12), 2661-2669. Matos, F. V., Yamashita, F., & Rocco Lahr, F. A. (2011). Hybrid composites made of thermosetting polymer, sisal fibers and sisal roving. Journal of Reinforced Plastics and Composites, 30(2), 167-178. Montazeri, A., Kadivar, M., Tavakkolizadeh, M., & Hejazi, I. (2013). Effects of alkaline treatment and fiber loading on mechanical properties of bagasse/polypropylene composites. Fibers and Polymers, 14(4), 603-609. Mouritz, A. P., & Cox, B. N. (2001). Review of structural sandwich composites. Composites Part A: Applied Science and Manufacturing, 32(8), 1015-1037. 59 Mouritz, A. P., Gellert, E., & Burchill, P. (2001). Mechanical properties of carbon-glass hybrid composites. Composites Part A: Applied Science and Manufacturing, 32(11), 1605-1613. Mukherjee, A., & Khan, M. A. (2010). Comparative mechanical and thermal characterization of jute fiber reinforced epoxy composites with glass and carbon fiber composites. Journal of Reinforced Plastics and Composites, 29(22), 3304-3312. Mwaikambo, L. Y., & Ansell, M. P. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12), 2222-2234. Najafi, S. K., Abdul Khalil, H. P. S., & Adnan, S. B. R. (2011). Mechanical properties of pineapple leaf fiber-reinforced polypropylene composites. BioResources, 6(2), 2134-2145. Naveenkumar, R., Sekaran, G., Ravirajan, A., & Sathishkumar, T. (2015). Evaluation of mechanical and morphological properties of banana-sisal-glass hybrid composites. Journal of Reinforced Plastics and Composites, 34(11), 901-912. Ng, H. M., Salmah, H., Ismail, H., & Abdullah, I. (2006). Effect of acetylation and MAPE modification of fibres on properties of kenaf fibre–polypropylene composites. Polymer International, 55(2), 199-206. Nishino, T., & Saito, T. (2004). Dispersion of single fibers and their mechanical properties in a biodegradable green composite: influence of fiber surface-treatment. Journal of Materials Science, 39(25), 7775-7777. Nishino, T., Takano, K., Chida, K., & Nakamae, K. (2004). Characterization of surface-modified bacterial cellulose nanofiber-reinforced polylactic acid composites. Composite Interfaces, 11(7), 571-583.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.localAbierto (Texto Completo)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.armarcCáñamospa
dc.subject.armarcConductores orgánicosspa
dc.subject.armarcPolímeros -- Producciónspa
dc.subject.armarcMaterias primasspa
dc.subject.armarcSostenibilidadspa
dc.subject.armarcPolímeros -- Aspectos ambientalesspa
dc.subject.proposalPolímerosspa
dc.subject.proposalFibrasspa
dc.subject.proposalContaminaciónspa
dc.subject.proposalPolymereng
dc.subject.proposalFibres
dc.subject.proposalPollution
dc.titlePropuesta de un bio-polímero reforzado con fibras de cáñamospa
dc.titleProposal for a bio-polymer reinforced with hemp fiberseng
dc.typeTrabajo de grado - Pregrado
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.otherTrabajo de grado - Pregrado
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
person.affiliation.nameIngeniería de Producción

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
QuinemeTomas2025.pdf
Tamaño:
828.17 KB
Formato:
Adobe Portable Document Format
Descripción:
Trabajo de Grado
Cargando...
Miniatura
Nombre:
QuinemeTomas2025_Anexo.pdf
Tamaño:
232.12 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización Publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.92 KB
Formato:
Item-specific license agreed upon to submission
Descripción: