Publicación:
Segmentación de clientes en empresa comercializadora de equipos biomédicos: estrategias de marketing basadas en clusterización

dc.contributor.advisorGarcía García, Diego Armando
dc.contributor.author Ojeda Espitia, Diego Enrique
dc.contributor.authorVargas Alvis, Fabian Andrés
dc.contributor.authorNúñez Vargas, Lady Johanna
dc.contributor.authorRíos Sánchez, Víctor Abraham
dc.contributor.researchgroupCiencias básicas
dc.creator.id1033700486
dc.creator.id1024509752
dc.creator.id1014237313
dc.creator.id1002344169
dc.date.accessioned2025-06-03T13:50:04Z
dc.date.issued2025-05-17
dc.description.abstractEl este documento aborda la problemática de segmentación de clientes en una empresa de venta de equipos biomédicos en Colombia cuyas estrategias de marketing y perfilamiento de clientes carece de un respaldo analítico robusto que le permita generar planes personalizados para aumentar la venta y la rentabilidad del negocio. Lo anterior, sumado al incremento de la competencia en el sector, dado que para 2022 se presentó un incremento de 8% de las importaciones de este tipo de productos. Por lo cual, el objetivo será desarrollar un modelo de clusterización que soporte la toma de decisiones del negocio.spa
dc.description.abstractThis document addresses the problem of customer segmentation in a biomedical equipment sales company in Colombia, whose marketing and customer profiling strategies lack robust analytical support that would allow it to generate customized plans to increase sales and business profitability. The above, added to the increase in competition in the sector, given that for 2022 there was an 8% increase in imports of this type of product. Therefore, the objective will be to develop a clustering model that supports business decision-making.eng
dc.description.degreelevelEspecializaciónspa
dc.description.degreenameEspecialista en Machine Learningspa
dc.description.researchareaEstadística aplicada y ciencia de datos
dc.description.tableofcontentsCAPÍTULO 1 .................................................................................................................................. 6 1. PLANTEAMIENTO DEL PROBLEMA................................................................................ 6 1.1 Antecedentes del Problema ............................................................................................... 6 1.2 Descripción del problema. ................................................................................................. 7 2. PREGUNTA DE INVESTIGACIÓN ..................................................................................... 8 3. OBJETIVOS............................................................................................................................ 8 Objetivo general ...................................................................................................................... 8 Objetivos específicos ............................................................................................................... 8 4. CONVENIENCIA DE LA INVESTIGACIÓN ...................................................................... 9 5. JUSTIFICACIÓN.................................................................................................................... 9 6. MARCO TEORICO .............................................................................................................. 10 Modelos de Clusterización y Segmentación para el Comportamiento de Compra de los Clientes. ................................................................................................................................. 11 6.1. Método K-means ......................................................................................................... 11 6.2. Método K-Medoids ..................................................................................................... 12 6.3. Análisis ABC .............................................................................................................. 13 6.4. Customer Lifetime Value (CLV) ................................................................................ 14 6.5. Clustering Jerárquico .................................................................................................. 16 6.6. DBSCAN .................................................................................................................... 17 6.7. Modelo RFM ............................................................................................................... 18 CAPÍTULO 2 ................................................................................................................................ 19 DISCUSIÓN CRÍTICA DE LOS MODELOS Y JUSTIFICACIÓN DE LA ELECCIÓN DEL MODELO A IMPLEMENTAR. ............................................................................................... 19 7. MARCO INSTITUCIONAL ................................................................................................ 21 CAPÍTULO 3 ................................................................................................................................ 22 8. METODOLOGÍA ................................................................................................................. 22 Primer nivel ........................................................................................................................... 22 Enfoque de la investigación ............................................................................................... 22 Alcance de la investigación ............................................................................................... 23 Diseño de la investigación ................................................................................................. 23 Pseudocódigo ..................................................................................................................... 35 CAPÍTULO 4 ................................................................................................................................ 37 9. ANÁLISIS Y DISCUSIÓN DE RESULTADOS ................................................................. 37 Desarrollo de los Modelos de Segmentación ........................................................................ 37 Filtrado y Análisis Exploratorio de Datos ............................................................................. 37 Modelo RFM – Enfoque Cuantiles ........................................................................................ 44 Modelo RFM – Enfoque Clústeres ........................................................................................ 48 Normalización de datos ......................................................................................................... 49 Número óptimo de clústeres .................................................................................................. 50 Desarrollo del Algoritmo K-means ....................................................................................... 51 Análisis de Resultados ........................................................................................................... 54 Elección de Enfoque .............................................................................................................. 56 Validación y Adaptabilidad del Modelo ................................................................................ 57 Estrategias de Marketing Recomendadas .............................................................................. 58 CAPITULO 5 ................................................................................................................................ 59 10. CONCLUSIONES .............................................................................................................. 59 REFERENCIAS ............................................................................................................................ 61spa
dc.formatpdf
dc.format.extent66 páginas
dc.format.mediumRecurso electrónicospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad Eanspa
dc.identifier.reponamereponame:Repositorio Institucional Biblioteca Digital Minervaspa
dc.identifier.repourlrepourl:https://repository.universidadean.edu.co/
dc.identifier.urihttps://hdl.handle.net/10882/14813
dc.language.isospa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.programEspecialización en Machine Learningspa
dc.relation.referencesAhammed, K., Azad, R. U., Al Jaber, M., Tareq Rony, M. A., & Ahammad, M. (2023). A Comparative Study of RFM-Based Clustering Methods in Customer Segmentation. 2023 26th International Conference on Computer and Information Technology, ICCIT 2023. https://doi.org/10.1109/ICCIT60459.2023.10441081
dc.relation.referencesAhmad M. A. Zamil, & T. G. Vasista. (2021). Customer Segmentation Using RFM Analysis: Realizing Through Python Implementation. www.pbr.co.inwww.pbr.co.in
dc.relation.referencesANDI - Cámaras sectoriales. (s. f.). https://www.andi.com.co/Home/Camara/8-dispositivos-medicos-e-insumos-para-la-salu.
dc.relation.referencesAnitha, P., Patil, M. (2022). RFM model for customer purchase behavior using K-Means algorithm [Archivo PDF]. https://doi.org/10.1016/j.jksuci.2019.12.011
dc.relation.referencesArthur, Lisa. Big Data Marketing : Engage Your Customers More Effectively and Drive Value, John Wiley & Sons, Incorporated, 2013. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/bibliotecaean-ebooks/detail.action?docID=1426518
dc.relation.referencesBerger, P. D., & Nasr, N. I. (1998). Marketing Models and Applications. Journal of interactive marketing.
dc.relation.referencesBult, J. R., & Wansbeek, T. J. (1995). Optimal selection for direct mail. Marketing Science, 14(4), 378-394. https://doi.org/10.1287/mksc.14.4.378
dc.relation.referencesCorrea Peralta , M. A., Almeida Salazar , B. A., Espinoza Bravo , M. G., Cabezas Reyes , A. T., & Castillo Villegas , K. G. (2024). Segmentación Efectiva de Clientes utilizando R: Técnicas para Administración y Marketing Avanzado: Effective Customer Segmentation using R: Techniques for Advanced Marketing and Management. Editorial SciELa, 1(1). https://doi.org/10.62131/978-9942-7173-2-0
dc.relation.referencesChen, R. (2016). Feedback-Based Eco-Design for Integrating the Recency, Frequency, and Monetary Value of Eco-Efficiency into Sustainability Management. Systems (Basel), 4(3), 30-. https://doi.org/10.3390/systems4030030
dc.relation.referencesDoğan, M., & Can, M. (2018). Customer Segmentation by Using RFM Model and Clustering Methods: A Case Study in Retail Industry. International Journal of Contemporary Economics and Administrative Sciences, 8(1).
dc.relation.referencesElveny, M., Syah, R. B. Y., & Nasution, M. K. M. (2024). An boosting business intelligent to customer lifetime value with robust M-estimation. IAES International Journal of Artificial Intelligence, 13(2), 1632–1639. https://doi.org/10.11591/ijai.v13.i2.pp1632-1639
dc.relation.referencesEvdokimova, S. A. (2021). Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods. Journal of Physics: Conference Series, 2032(1), 012117. https://doi.org/10.1088/1742-6596/2032/1/012117
dc.relation.referencesExcelx. (n.d.). What is Excel? Meaning, definition and uses. https://excelx.com/what-is-excel/
dc.relation.referencesFayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-54. https://doi.org/10.1609/aimag.v17i3.1230
dc.relation.referencesFeng, Y., Yin, Y., Wang, D., Ignatius, J., Cheng, T. C. E., Marra, M., & Guo, Y. (2024). Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach. Journal of Business Research, 184. https://doi.org/10.1016/j.jbusres.2024.114872
dc.relation.referencesGalvez-Torres, E., Cruz-Alfaro, M., Cespedes-Blanco, C., Raymundo, C., Mamani-Macedo, N., & Dominguez, F. (2020). B2B marketing method adapted to sales improvement through the implementation of ABC classification tool and inbound marketing in SMEs. En J. I. Kantola, S.
dc.relation.referencesGoogle Research. (n.d.). Colaboratory frequently asked questions. https://research.google.com/colaboratory/faq.html
dc.relation.referencesGopal, M. (2019). OVERVIEW OF BASIC CLUSTERING METHODS. In Applied Machine Learning (1st Edition). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9781260456844/toc-chapter/chapter7/section/section20
dc.relation.referencesHodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85-126. https://doi.org/10.1023/B:AIRE.0000045509.59082.9a
dc.relation.referencesIdowu, S., & Kattukottai, S. (2019). Customer segmentation based on RFM model using kmeans, hierarchical and fuzzy c-means clustering algorithms. ResearchGate. https://doi.org/10.13140/RG.2.2.15379.71201
dc.relation.referencesKasem, M., Hamada, M., Taj-Eddin, I. (2024). Customer profiling, segmentation, and sales prediction using AI in direct marketing. https://doi.org/10.1007/s00521-023-09339-6
dc.relation.referencesKopřivová, V., & Matušínská, K. (2023). UNLOCKING GENERATION Y: MARKET SEGMENTATION VIA LIFESTYLE INSIGHTS. Communication Today, 14(2), 122–139. https://doi.org/https://doi.org/10.34135/communicationtoday.2023.Vol.14.No.2.9
dc.relation.referencesKumar, V., & Reinartz, W. (2018). Customer Relationship Management : Concept, Strategy, and Tools (3rd ed. 2018.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55381-7
dc.relation.referencesLiu, A., McLellan, K., & Reinholt, B. (2015). How medical-device manufacturers can transform marketing and sales capabilities. McKinsey & Company. https://www.mckinsey.com/industries/life-sciences/our-insights/how-medical-device-manufacturers-can-transform-marketing-and-sales-capabilities
dc.relation.referencesLópez, Á. J. C., Caicedo, C. G., & Oviedo, P. C. J. (2017). Análisis multivariado para segmentación de clientes basada en RFM. Tecnura, 21(54), 41-51. https://doi.org/10.14483/22487638.12957
dc.relation.referencesMontero, M., Suarez, D., Aguirre, M. I. P., & Aguirre, R. E. C. (2020). Estimating customer lifetime value: A metric alternative for customer segmentation applied to the retail sector. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology. https://doi.org/10.18687/LACCEI2020.1.1.327
dc.relation.referencesNair, A. (2023). RFM analysis for successful customer segmentation. Putler. https://www.putler.com/rfm-analysis/
dc.relation.referencesNatingga, D. (2018). Data science algorithms in a week : top 7 algorithms for scientific computing, data analysis, and machine learning (Second edition, p. 107). Packt.
dc.relation.referencesNazir, & V. Salminen (Eds.), Advances in Human Factors, Business Management and Leadership. AHFE 2020. Advances in Intelligent Systems and Computing (Vol. 1209, pp. 167-173). Springer. https://doi.org/10.1007/978-3-030-50791-6_21
dc.relation.referencesNie, D., Scriney, M., Liang, X., & Roantree, M. (2024). From data acquisition to validation: a complete workflow for predicting individual customer lifetime value. Journal of Marketing Analytics, 12(2), 321–341. https://doi.org/10.1057/s41270-022-00197-0
dc.relation.referencesPython Software Foundation. (2022, noviembre 22). BeginnersGuide/Overview. Python Wiki. https://wiki.python.org/moin/BeginnersGuide/Overview
dc.relation.referencesRendon, E., Abundez, I. (2016). RENTOL: Un algoritmo de agrupamiento basado en K-means [Archivo PDF]. https://rcs.cic.ipn.mx/2016_128/RENTOL_%20Un%20algoritmo%20de%20agrupamiento%20basado%20en%20K-means.pdf
dc.relation.referencesSander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-based clustering in spatial databases: A summary. In Advances in Database Technology - EDBT 1998 (pp. 206-222). Springer. https://doi.org/10.1007/3-540-49140-4_15
dc.relation.referencesSembiring Berahmana, R. W. B., Mohammed, F. A., & Chairuang, K. (2020). Customer segmentation based on RFM model using K-Means, K-Medoids, and DBSCAN methods. Lontar Komputer, 11(1), 32-43. https://doi.org/10.24843/LKJITI.2020.v11.i01.p04
dc.relation.referencesSun, Z.-H., Zuo, T.-Y., Liang, D., Ming, X.-G., Chen, Z.-H., Qiu, S.-Q. (2021). GPHC: A heuristic clustering method to customer segmentation [Archivo PDF]. https://doi.org/10.1016/j.asoc.2021.107677
dc.relation.referencesWang, Y., & Wang, H. (2018). A survey on density-based clustering algorithms. Journal of Computer Science and Technology, 33(3), 453-469. https://doi.org/10.1007/s11390-018-1832-5
dc.relation.referencesWong et al., (2024). Exploring Customer Segmentation in E-Commerce using RFM Analysis with Clustering Techniques. Journal of Telecommunications and the Digital Economy, 12, 105. https://web-p-ebscohost-com.bdbiblioteca.universidadean.edu.co/ehost/pdfviewer/pdfviewer?vid=3&sid=deeebf80-471f-47eb-8b57-8255d9132180%40redis
dc.relation.referencesYang, K., & Trewn, J. (2004). Cluster Analysis. In Multivariate Statistical Methods in Quality Management (1st Edition). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9780071432085/chapter/chapter7
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.subject.lembEvaluación de proyectosspa
dc.subject.lembAnálisis de mercadeospa
dc.subject.lembAgrupación de productosspa
dc.subject.lembComportamiento del consumidorspa
dc.subject.lembPruebas de mercadospa
dc.subject.proposalAgrupamientospa
dc.subject.proposalSegmentación de clientesspa
dc.subject.proposalEquipos biomédicosspa
dc.subject.proposalMercadeospa
dc.subject.proposalClusteringeng
dc.subject.proposalCustomer segmentationeng
dc.subject.proposalBiomedical equipmenteng
dc.subject.proposalMarketingeng
dc.titleSegmentación de clientes en empresa comercializadora de equipos biomédicos: estrategias de marketing basadas en clusterizaciónspa
dc.titleCustomer segmentation in biomedical equipment trading company: marketing strategies based on clusteringeng
dc.typeTrabajo de grado - Especializaciónspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.otherTrabajo de grado - Especialización
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
person.affiliation.nameEspecialización en Machine Learning
person.affiliation.nameEspecialización en Machine Learning
person.affiliation.nameEspecialización en Machine Learning
person.affiliation.nameEspecialización en Machine Learning

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
NuñezLeidy2025.pdf
Tamaño:
3.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Especialización
Cargando...
Miniatura
Nombre:
NuñezLeidy2025_Anexo.pdf
Tamaño:
568.02 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización Publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.92 KB
Formato:
Item-specific license agreed upon to submission
Descripción: