Publicación: Segmentación de clientes en empresa comercializadora de equipos biomédicos: estrategias de marketing basadas en clusterización
| dc.contributor.advisor | García García, Diego Armando | |
| dc.contributor.author | Ojeda Espitia, Diego Enrique | |
| dc.contributor.author | Vargas Alvis, Fabian Andrés | |
| dc.contributor.author | Núñez Vargas, Lady Johanna | |
| dc.contributor.author | Ríos Sánchez, Víctor Abraham | |
| dc.contributor.researchgroup | Ciencias básicas | |
| dc.creator.id | 1033700486 | |
| dc.creator.id | 1024509752 | |
| dc.creator.id | 1014237313 | |
| dc.creator.id | 1002344169 | |
| dc.date.accessioned | 2025-06-03T13:50:04Z | |
| dc.date.issued | 2025-05-17 | |
| dc.description.abstract | El este documento aborda la problemática de segmentación de clientes en una empresa de venta de equipos biomédicos en Colombia cuyas estrategias de marketing y perfilamiento de clientes carece de un respaldo analítico robusto que le permita generar planes personalizados para aumentar la venta y la rentabilidad del negocio. Lo anterior, sumado al incremento de la competencia en el sector, dado que para 2022 se presentó un incremento de 8% de las importaciones de este tipo de productos. Por lo cual, el objetivo será desarrollar un modelo de clusterización que soporte la toma de decisiones del negocio. | spa |
| dc.description.abstract | This document addresses the problem of customer segmentation in a biomedical equipment sales company in Colombia, whose marketing and customer profiling strategies lack robust analytical support that would allow it to generate customized plans to increase sales and business profitability. The above, added to the increase in competition in the sector, given that for 2022 there was an 8% increase in imports of this type of product. Therefore, the objective will be to develop a clustering model that supports business decision-making. | eng |
| dc.description.degreelevel | Especialización | spa |
| dc.description.degreename | Especialista en Machine Learning | spa |
| dc.description.researcharea | Estadística aplicada y ciencia de datos | |
| dc.description.tableofcontents | CAPÍTULO 1 .................................................................................................................................. 6 1. PLANTEAMIENTO DEL PROBLEMA................................................................................ 6 1.1 Antecedentes del Problema ............................................................................................... 6 1.2 Descripción del problema. ................................................................................................. 7 2. PREGUNTA DE INVESTIGACIÓN ..................................................................................... 8 3. OBJETIVOS............................................................................................................................ 8 Objetivo general ...................................................................................................................... 8 Objetivos específicos ............................................................................................................... 8 4. CONVENIENCIA DE LA INVESTIGACIÓN ...................................................................... 9 5. JUSTIFICACIÓN.................................................................................................................... 9 6. MARCO TEORICO .............................................................................................................. 10 Modelos de Clusterización y Segmentación para el Comportamiento de Compra de los Clientes. ................................................................................................................................. 11 6.1. Método K-means ......................................................................................................... 11 6.2. Método K-Medoids ..................................................................................................... 12 6.3. Análisis ABC .............................................................................................................. 13 6.4. Customer Lifetime Value (CLV) ................................................................................ 14 6.5. Clustering Jerárquico .................................................................................................. 16 6.6. DBSCAN .................................................................................................................... 17 6.7. Modelo RFM ............................................................................................................... 18 CAPÍTULO 2 ................................................................................................................................ 19 DISCUSIÓN CRÍTICA DE LOS MODELOS Y JUSTIFICACIÓN DE LA ELECCIÓN DEL MODELO A IMPLEMENTAR. ............................................................................................... 19 7. MARCO INSTITUCIONAL ................................................................................................ 21 CAPÍTULO 3 ................................................................................................................................ 22 8. METODOLOGÍA ................................................................................................................. 22 Primer nivel ........................................................................................................................... 22 Enfoque de la investigación ............................................................................................... 22 Alcance de la investigación ............................................................................................... 23 Diseño de la investigación ................................................................................................. 23 Pseudocódigo ..................................................................................................................... 35 CAPÍTULO 4 ................................................................................................................................ 37 9. ANÁLISIS Y DISCUSIÓN DE RESULTADOS ................................................................. 37 Desarrollo de los Modelos de Segmentación ........................................................................ 37 Filtrado y Análisis Exploratorio de Datos ............................................................................. 37 Modelo RFM – Enfoque Cuantiles ........................................................................................ 44 Modelo RFM – Enfoque Clústeres ........................................................................................ 48 Normalización de datos ......................................................................................................... 49 Número óptimo de clústeres .................................................................................................. 50 Desarrollo del Algoritmo K-means ....................................................................................... 51 Análisis de Resultados ........................................................................................................... 54 Elección de Enfoque .............................................................................................................. 56 Validación y Adaptabilidad del Modelo ................................................................................ 57 Estrategias de Marketing Recomendadas .............................................................................. 58 CAPITULO 5 ................................................................................................................................ 59 10. CONCLUSIONES .............................................................................................................. 59 REFERENCIAS ............................................................................................................................ 61 | spa |
| dc.format | ||
| dc.format.extent | 66 páginas | |
| dc.format.medium | Recurso electrónico | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | instname:Universidad Ean | spa |
| dc.identifier.reponame | reponame:Repositorio Institucional Biblioteca Digital Minerva | spa |
| dc.identifier.repourl | repourl:https://repository.universidadean.edu.co/ | |
| dc.identifier.uri | https://hdl.handle.net/10882/14813 | |
| dc.language.iso | spa | |
| dc.publisher.faculty | Facultad de Ingeniería | spa |
| dc.publisher.program | Especialización en Machine Learning | spa |
| dc.relation.references | Ahammed, K., Azad, R. U., Al Jaber, M., Tareq Rony, M. A., & Ahammad, M. (2023). A Comparative Study of RFM-Based Clustering Methods in Customer Segmentation. 2023 26th International Conference on Computer and Information Technology, ICCIT 2023. https://doi.org/10.1109/ICCIT60459.2023.10441081 | |
| dc.relation.references | Ahmad M. A. Zamil, & T. G. Vasista. (2021). Customer Segmentation Using RFM Analysis: Realizing Through Python Implementation. www.pbr.co.inwww.pbr.co.in | |
| dc.relation.references | ANDI - Cámaras sectoriales. (s. f.). https://www.andi.com.co/Home/Camara/8-dispositivos-medicos-e-insumos-para-la-salu. | |
| dc.relation.references | Anitha, P., Patil, M. (2022). RFM model for customer purchase behavior using K-Means algorithm [Archivo PDF]. https://doi.org/10.1016/j.jksuci.2019.12.011 | |
| dc.relation.references | Arthur, Lisa. Big Data Marketing : Engage Your Customers More Effectively and Drive Value, John Wiley & Sons, Incorporated, 2013. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/bibliotecaean-ebooks/detail.action?docID=1426518 | |
| dc.relation.references | Berger, P. D., & Nasr, N. I. (1998). Marketing Models and Applications. Journal of interactive marketing. | |
| dc.relation.references | Bult, J. R., & Wansbeek, T. J. (1995). Optimal selection for direct mail. Marketing Science, 14(4), 378-394. https://doi.org/10.1287/mksc.14.4.378 | |
| dc.relation.references | Correa Peralta , M. A., Almeida Salazar , B. A., Espinoza Bravo , M. G., Cabezas Reyes , A. T., & Castillo Villegas , K. G. (2024). Segmentación Efectiva de Clientes utilizando R: Técnicas para Administración y Marketing Avanzado: Effective Customer Segmentation using R: Techniques for Advanced Marketing and Management. Editorial SciELa, 1(1). https://doi.org/10.62131/978-9942-7173-2-0 | |
| dc.relation.references | Chen, R. (2016). Feedback-Based Eco-Design for Integrating the Recency, Frequency, and Monetary Value of Eco-Efficiency into Sustainability Management. Systems (Basel), 4(3), 30-. https://doi.org/10.3390/systems4030030 | |
| dc.relation.references | Doğan, M., & Can, M. (2018). Customer Segmentation by Using RFM Model and Clustering Methods: A Case Study in Retail Industry. International Journal of Contemporary Economics and Administrative Sciences, 8(1). | |
| dc.relation.references | Elveny, M., Syah, R. B. Y., & Nasution, M. K. M. (2024). An boosting business intelligent to customer lifetime value with robust M-estimation. IAES International Journal of Artificial Intelligence, 13(2), 1632–1639. https://doi.org/10.11591/ijai.v13.i2.pp1632-1639 | |
| dc.relation.references | Evdokimova, S. A. (2021). Segmentation of store customers to increase sales using ABC-XYZ-analysis and clustering methods. Journal of Physics: Conference Series, 2032(1), 012117. https://doi.org/10.1088/1742-6596/2032/1/012117 | |
| dc.relation.references | Excelx. (n.d.). What is Excel? Meaning, definition and uses. https://excelx.com/what-is-excel/ | |
| dc.relation.references | Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37-54. https://doi.org/10.1609/aimag.v17i3.1230 | |
| dc.relation.references | Feng, Y., Yin, Y., Wang, D., Ignatius, J., Cheng, T. C. E., Marra, M., & Guo, Y. (2024). Enhancing e-commerce customer churn management with a profit- and AUC-focused prescriptive analytics approach. Journal of Business Research, 184. https://doi.org/10.1016/j.jbusres.2024.114872 | |
| dc.relation.references | Galvez-Torres, E., Cruz-Alfaro, M., Cespedes-Blanco, C., Raymundo, C., Mamani-Macedo, N., & Dominguez, F. (2020). B2B marketing method adapted to sales improvement through the implementation of ABC classification tool and inbound marketing in SMEs. En J. I. Kantola, S. | |
| dc.relation.references | Google Research. (n.d.). Colaboratory frequently asked questions. https://research.google.com/colaboratory/faq.html | |
| dc.relation.references | Gopal, M. (2019). OVERVIEW OF BASIC CLUSTERING METHODS. In Applied Machine Learning (1st Edition). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9781260456844/toc-chapter/chapter7/section/section20 | |
| dc.relation.references | Hodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85-126. https://doi.org/10.1023/B:AIRE.0000045509.59082.9a | |
| dc.relation.references | Idowu, S., & Kattukottai, S. (2019). Customer segmentation based on RFM model using kmeans, hierarchical and fuzzy c-means clustering algorithms. ResearchGate. https://doi.org/10.13140/RG.2.2.15379.71201 | |
| dc.relation.references | Kasem, M., Hamada, M., Taj-Eddin, I. (2024). Customer profiling, segmentation, and sales prediction using AI in direct marketing. https://doi.org/10.1007/s00521-023-09339-6 | |
| dc.relation.references | Kopřivová, V., & Matušínská, K. (2023). UNLOCKING GENERATION Y: MARKET SEGMENTATION VIA LIFESTYLE INSIGHTS. Communication Today, 14(2), 122–139. https://doi.org/https://doi.org/10.34135/communicationtoday.2023.Vol.14.No.2.9 | |
| dc.relation.references | Kumar, V., & Reinartz, W. (2018). Customer Relationship Management : Concept, Strategy, and Tools (3rd ed. 2018.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-55381-7 | |
| dc.relation.references | Liu, A., McLellan, K., & Reinholt, B. (2015). How medical-device manufacturers can transform marketing and sales capabilities. McKinsey & Company. https://www.mckinsey.com/industries/life-sciences/our-insights/how-medical-device-manufacturers-can-transform-marketing-and-sales-capabilities | |
| dc.relation.references | López, Á. J. C., Caicedo, C. G., & Oviedo, P. C. J. (2017). Análisis multivariado para segmentación de clientes basada en RFM. Tecnura, 21(54), 41-51. https://doi.org/10.14483/22487638.12957 | |
| dc.relation.references | Montero, M., Suarez, D., Aguirre, M. I. P., & Aguirre, R. E. C. (2020). Estimating customer lifetime value: A metric alternative for customer segmentation applied to the retail sector. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology. https://doi.org/10.18687/LACCEI2020.1.1.327 | |
| dc.relation.references | Nair, A. (2023). RFM analysis for successful customer segmentation. Putler. https://www.putler.com/rfm-analysis/ | |
| dc.relation.references | Natingga, D. (2018). Data science algorithms in a week : top 7 algorithms for scientific computing, data analysis, and machine learning (Second edition, p. 107). Packt. | |
| dc.relation.references | Nazir, & V. Salminen (Eds.), Advances in Human Factors, Business Management and Leadership. AHFE 2020. Advances in Intelligent Systems and Computing (Vol. 1209, pp. 167-173). Springer. https://doi.org/10.1007/978-3-030-50791-6_21 | |
| dc.relation.references | Nie, D., Scriney, M., Liang, X., & Roantree, M. (2024). From data acquisition to validation: a complete workflow for predicting individual customer lifetime value. Journal of Marketing Analytics, 12(2), 321–341. https://doi.org/10.1057/s41270-022-00197-0 | |
| dc.relation.references | Python Software Foundation. (2022, noviembre 22). BeginnersGuide/Overview. Python Wiki. https://wiki.python.org/moin/BeginnersGuide/Overview | |
| dc.relation.references | Rendon, E., Abundez, I. (2016). RENTOL: Un algoritmo de agrupamiento basado en K-means [Archivo PDF]. https://rcs.cic.ipn.mx/2016_128/RENTOL_%20Un%20algoritmo%20de%20agrupamiento%20basado%20en%20K-means.pdf | |
| dc.relation.references | Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-based clustering in spatial databases: A summary. In Advances in Database Technology - EDBT 1998 (pp. 206-222). Springer. https://doi.org/10.1007/3-540-49140-4_15 | |
| dc.relation.references | Sembiring Berahmana, R. W. B., Mohammed, F. A., & Chairuang, K. (2020). Customer segmentation based on RFM model using K-Means, K-Medoids, and DBSCAN methods. Lontar Komputer, 11(1), 32-43. https://doi.org/10.24843/LKJITI.2020.v11.i01.p04 | |
| dc.relation.references | Sun, Z.-H., Zuo, T.-Y., Liang, D., Ming, X.-G., Chen, Z.-H., Qiu, S.-Q. (2021). GPHC: A heuristic clustering method to customer segmentation [Archivo PDF]. https://doi.org/10.1016/j.asoc.2021.107677 | |
| dc.relation.references | Wang, Y., & Wang, H. (2018). A survey on density-based clustering algorithms. Journal of Computer Science and Technology, 33(3), 453-469. https://doi.org/10.1007/s11390-018-1832-5 | |
| dc.relation.references | Wong et al., (2024). Exploring Customer Segmentation in E-Commerce using RFM Analysis with Clustering Techniques. Journal of Telecommunications and the Digital Economy, 12, 105. https://web-p-ebscohost-com.bdbiblioteca.universidadean.edu.co/ehost/pdfviewer/pdfviewer?vid=3&sid=deeebf80-471f-47eb-8b57-8255d9132180%40redis | |
| dc.relation.references | Yang, K., & Trewn, J. (2004). Cluster Analysis. In Multivariate Statistical Methods in Quality Management (1st Edition). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9780071432085/chapter/chapter7 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 2.5 Colombia | |
| dc.rights.local | Abierto (Texto Completo) | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | |
| dc.subject.lemb | Evaluación de proyectos | spa |
| dc.subject.lemb | Análisis de mercadeo | spa |
| dc.subject.lemb | Agrupación de productos | spa |
| dc.subject.lemb | Comportamiento del consumidor | spa |
| dc.subject.lemb | Pruebas de mercado | spa |
| dc.subject.proposal | Agrupamiento | spa |
| dc.subject.proposal | Segmentación de clientes | spa |
| dc.subject.proposal | Equipos biomédicos | spa |
| dc.subject.proposal | Mercadeo | spa |
| dc.subject.proposal | Clustering | eng |
| dc.subject.proposal | Customer segmentation | eng |
| dc.subject.proposal | Biomedical equipment | eng |
| dc.subject.proposal | Marketing | eng |
| dc.title | Segmentación de clientes en empresa comercializadora de equipos biomédicos: estrategias de marketing basadas en clusterización | spa |
| dc.title | Customer segmentation in biomedical equipment trading company: marketing strategies based on clustering | eng |
| dc.type | Trabajo de grado - Especialización | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
| dc.type.other | Trabajo de grado - Especialización | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dspace.entity.type | Publication | |
| person.affiliation.name | Especialización en Machine Learning | |
| person.affiliation.name | Especialización en Machine Learning | |
| person.affiliation.name | Especialización en Machine Learning | |
| person.affiliation.name | Especialización en Machine Learning |
Archivos
Bloque original
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.92 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
