Publicación:
Effect of the inclusion of strawberry by-products as a source of phenolic compounds and dietary fiber on the technofunctional properties of a puffed snack obtained by extrusion

dc.contributor.advisorLeón Pulido, Jeffrey
dc.contributor.advisorBourvellec, Carine Le
dc.contributor.authorBonilla Méndez, Jeimmy Rocío
dc.contributor.researchgroupCIENCIA, TECNOLOGÍA E INNOVACIÓN::TECNOLOGICO ONTARE MAIRA ALEJANDRA GARCIA JARAMILLO Categoría A1 COL0026879
dc.creator.id1061709593
dc.date.accessioned2025-08-19T15:29:50Z
dc.date.issued2025-07-10
dc.description.abstractLa valorización de subproductos agroindustriales mediante su incorporación en alimentos funcionales representa una estrategia prometedora para promover la sostenibilidad y la economía circular. Esta tesis doctoral abordó de manera integral el uso de subproductos de fresa en la formulación de snacks extruidos a base de almidón de yuca, con el objetivo de mejorar sus propiedades nutricionales, estructurales y funcionales. A través de tres estudios complementarios, se evaluó el efecto de la extrusión sobre las propiedades físicas, la composición de fibra y compuestos fenólicos, así como sobre la estructura y digestibilidad del almidón y la bioaccesibilidad de los polifenoles. En un primer estudio, se optimizó el proceso de extrusión para maximizar la calidad física y el contenido fenólico de los extruidos. Posteriormente, se analizaron los cambios composicionales en la fibra y los polifenoles inducidos por la extrusión, identificando transformaciones estructurales clave y posibles interacciones entre componentes. Finalmente, se evaluaron los cambios en la estructura del almidón, su digestibilidad, el índice glucémico in vitro y la bioaccesibilidad de compuestos fenólicos, encontrando que la presencia de fibra y polifenoles moduló favorablemente estos parámetros. Los resultados demuestran que la inclusión de subproductos de fresa, tanto enteros como fraccionados, permite desarrollar snacks extruidos con propiedades mejoradas y potencial hipoglucémico, resaltando el valor funcional de estos residuos y su aplicabilidad en el diseño de alimentos más saludables y sostenibles.spa
dc.description.abstractThe valorization of agro-industrial by-products through their incorporation into functional foods is a promising strategy to promote sustainability and the circular economy. This doctoral thesis comprehensively explored the use of strawberry by-products in the formulation of starch-based extruded snacks, aiming to enhance their nutritional, structural, and functional properties. Through three complementary studies, the effect of extrusion was evaluated on physical quality, fiber and phenolic compound composition, as well as starch structure, digestibility, and polyphenol bioaccessibility. The first study optimized the extrusion process to maximize physical quality and phenolic content. The second study examined compositional changes in fiber and polyphenols induced by extrusion, highlighting key structural transformations and potential interactions between matrix components. The final study assessed changes in starch structure, digestibility, in vitro glycemic index, and polyphenol bioaccessibility, showing that the presence of fiber and phenolic compounds favorably modulated these parameters. Findings demonstrate that the inclusion of whole and fractionated strawberry by-products enables the development of extruded snacks with improved properties and hypoglycemic potential, underscoring the functional value of these residues and their applicability in the design of healthier and more sustainable foods.eng
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería de Procesosspa
dc.description.researchareaCIENCIA, TECNOLOGÍA E INNOVACIÓN::TECNOLOGICO ONTARE MAIRA ALEJANDRA GARCIA JARAMILLO Categoría A1 COL0026879::Gestión y Diseño de Procesos
dc.description.tableofcontentsChapter 1. Introduction ……………………………………………………………………………………… 1 Chapter 2. Plant-derived ingredients as a source of phenolic compounds in extruded snacks: Functional insights and the role of dietary fiber and starch... 6 Chapter 3. Optimizing extrusion parameters to develop puffed snacks enriched with strawberry by-products: impacts on phenolic compounds composition and content, textural properties and physical quality ………………… 56 Chapter 4. Comprehensive study of the effect of extrusion on fiber and phenolic compounds in whole and fractionated strawberry by-products in tapioca starch-based extrudates ………………………………………………………………………… 85 Chapter 5. Extrusion of model systems with tapioca starch and strawberry by-products: starch structural changes, in vitro digestibility, glycemic index, and total phenolic compounds bioaccessibility ………………………………………………… 110 Chapter 6. General discussion …………………………………………………………………………… 131
dc.format.extent150 páginas
dc.format.mediumRecurso electrónicospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad EANspa
dc.identifier.localBDM-DIP
dc.identifier.reponamereponame:Repositorio Institucional Biblioteca Digital Minervaspa
dc.identifier.urihttps://hdl.handle.net/10882/15068
dc.language.isoeng
dc.publisherUniversidad Ean
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.programDoctorado Ingeniería de Procesos - Presencialspa
dc.relation.referencesAčkar, Đ., Jozinović, A., Babić, J., Miličević, B., Panak Balentić, J., & Šubarić, D. (2018). Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products. Innovative Food Science and Emerging Technologies, 47, 517–524. https://doi.org/10.1016/j.ifset.2018.05.004 Aghajanzadeh, S., Sultana, A., Mohammad Ziaiifar, A., & Khalloufi, S. (2024). Formation of pores and bubbles and their impacts on the quality attributes of processed foods: A review. In Food Research International (Vol. 188). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2024.114494 Aguilar-Ávila, D. S., Martínez-Flores, H. E., Morales-Sánchez, E., Reynoso-Camacho, R., & Garnica-Romo, M. G. (2023). Effect of Extrusion on the Functional Properties and Bioactive Compounds of Tamarind (Tamarindus indica L.) Shell. Polish Journal of Food and Nutrition Sciences, 73(3), 278–288. https://doi.org/10.31883/pjfns/170815 Alam, M. S., Kaur, J., Khaira, H., & Gupta, K. (2016). Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review. Critical Reviews in Food Science and Nutrition, 56(3), 445–473. https://doi.org/10.1080/10408398.2013.779568 Ali, I. M., Forsido, S. F., Kuyu, C. G., Ahmed, E. H., Andersa, K. N., Chane, K. T., & Regasa, T. K. (2024). Effects of extrusion process conditions on nutritional, anti-nutritional, physical, functional, and sensory properties of extruded snack: A review. In Food Science and Nutrition. John Wiley and Sons Inc. https://doi.org/10.1002/fsn3.4472 Altan, A., McCarthy, K. L., & Maskan, M. (2009). Effect of extrusion cooking on functional properties and in vitro starch digestibility of barley-based extrudates from fruit and vegetable by-products. Journal of Food Science, 74(2). https://doi.org/10.1111/j.1750-3841.2009.01051.x Amoako, D., & Awika, J. M. (2016). Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose. Current Opinion in Food Science, 8, 14–18. https://doi.org/10.1016/j.cofs.2016.01.010 Amoako, D. B., & Awika, J. M. (2019). Resistant starch formation through intrahelical V-complexes between polymeric proanthocyanidins and amylose. Food Chemistry, 285, 326–333. https://doi.org/10.1016/j.foodchem.2019.01.173 Anderson, J. W., Baird, P., Davis, R. H., Ferreri, S., Knudtson, M., Koraym, A., Waters, V., & Williams, C. L. (2009). Health benefits of dietary fiber. In Nutrition Reviews (Vol. 67, Issue 4, pp. 188–205). https://doi.org/10.1111/j.1753-4887.2009.00189.x Anigboro, A. A., Avwioroko, O. J., Ohwokevwo, O. A., Pessu, B., & Tonukari, N. J. (2021). Phytochemical profile, antioxidant, α-amylase inhibition, binding interaction and docking studies of Justicia carnea bioactive compounds with α-amylase. Biophysical Chemistry, 269(December 2020), 106529. https://doi.org/10.1016/j.bpc.2020.106529 Arribas, C., Cabellos, B., Cuadrado, C., Guillamón, E., & Pedrosa, M. M. (2019a). Bioactive compounds, antioxidant activity, and sensory analysis of rice-based extruded snacks-like fortified with bean and carob fruit flours. Foods, 8(9). https://doi.org/10.3390/foods8090381 Arribas, C., Cabellos, B., Cuadrado, C., Guillamón, E., & Pedrosa, M. M. (2019b). The effect of extrusion on the bioactive compounds and antioxidant capacity of novel gluten-free expanded products based on carob fruit, pea and rice blends. Innovative Food Science and Emerging Technologies, 52, 100–107. Arribas, C., Pereira, E., Barros, L., Alves, M. J., Calhelha, R. C., Guillamón, E., Pedrosa, M. M., & Ferreira, I. C. F. R. (2019). Healthy novel gluten-free formulations based on beans, carob fruit and rice: Extrusion effect on organic acids, tocopherols, phenolic compounds and bioactivity. Food Chemistry, 292(April), 304–313. https://doi.org/10.1016/j.foodchem.2019.04.074 Asquieri, E. R., de Jesus Berrios, J., de Assis Ramirez Asquieri, E. M., Pan, J., de Moura e Silva, A. G., & Batista, R. D. (2021). The effect of extrusion processing on the physicochemical and antioxidant properties of fermented and non-fermented Jabuticaba pomace. Polimeros, 30(4), 1–8. https://doi.org/10.1590/0104-1428.06620 Aussanasuwannakul, A., Teangpook, C., Treesuwan, W., Puntaburt, K., & Butsuwan, P. (2022). Effect of the Addition of Soybean Residue (Okara) on the Physicochemical, Tribological, Instrumental, and Sensory Texture Properties of Extruded Snacks. Foods, 11(19). https://doi.org/10.3390/foods11192967 Babatunde, O. O., Cargo-Froom, C. L., Ai, Y., Newkirk, R. W., Marinangeli, C. P. F., Shoveller, A. K., & Columbus, D. A. (2023). Extrusion effects on the starch and fibre composition of Canadian pulses. Canadian Journal of Animal Science, 103(3), 289–297. https://doi.org/10.1139/cjas-2022-0127 Bahadoran, Z., Mirmiran, P., & Azizi, F. (2013). Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. Journal of Diabetes and Metabolic Disorders, 12(1), 1–9. https://doi.org/10.1186/2251-6581-12-43 Beltrán-Borbor, K. K., Ortega-Suasnavas, A. D., Ordóñez-Pazmiño, M. V., & Tinoco-Caicedo, D. L. (2025). Utilization of brewer’s spent grain in extrusion processing: A review. In Applied Food Research (Vol. 5, Issue 1). Elsevier B.V. https://doi.org/10.1016/j.afres.2025.100868 Beltrán-Medina, E. A., Guatemala-Morales, G. M., Padilla-Camberos, E., Corona-González, R. I., Mondragón-Cortez, P. M., & Arriola-Guevara, E. (2020). Evaluation of the use of a coffee industry by-product in a cereal-based extruded food product. Foods, 9(8), 1–15. https://doi.org/10.3390/foods9081008 Benítez, V., Rebollo-Hernanz, M., Aguilera, Y., Bejerano, S., Cañas, S., & Martín-Cabrejas, M. A. (2021). Extruded coffee parchment shows enhanced antioxidant, hypoglycaemic, and hypolipidemic properties by releasing phenolic compounds from the fibre matrix. Food and Function, 12(3), 1097–1110. https://doi.org/10.1039/d0fo02295k Bernin, J., Watanabe, P., Wagner, C. E., Smith, S., & Ganjyal, G. M. (2024). Mung bean protein enhances the expansion of corn starch during twin-screw extrusion. Journal of Food Science. https://doi.org/10.1111/1750-3841.17375 Bhattacharya, S. (2023). Introduction. In Snack Foods (pp. 1–16). Elsevier. https://doi.org/10.1016/B978-0-12-819759-2.00002-1 Bisharat, G. I., Lazou, A. E., Panagiotou, N. M., Krokida, M. K., & Maroulis, Z. B. (2015). Antioxidant potential and quality characteristics of vegetable-enriched corn-based extruded snacks. Journal of Food Science and Technology, 52(7), 3986–4000. https://doi.org/10.1007/s13197-014-1519-z Bisharat, G. I., Oikonomopoulou, V. P., Panagiotou, N. M., Krokida, M. K., & Maroulis, Z. B. (2013). Effect of extrusion conditions on the structural properties of corn extrudates enriched with dehydrated vegetables. Food Research International, 53(1), 1–14. https://doi.org/10.1016/j.foodres.2013.03.043 Blejan, A. M., Nour, V., Corbu, A. R., & Codină, G. G. (2025). Corn-Based Extruded Snacks Supplemented with Bilberry Pomace Powder: Physical, Chemical, Functional, and Sensory Properties. Applied Sciences (Switzerland), 15(5). https://doi.org/10.3390/app15052468 Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews, 72(7), 429–452. https://doi.org/10.1111/nure.12114 Brahem, M., Eder, S., Renard, C. M. G. C., Loonis, M., & Le Bourvellec, C. (2017). Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT, 85, 380–384. https://doi.org/10.1016/j.lwt.2016.09.009 Brennan, C., Brennan, M., Derbyshire, E., & Tiwari, B. K. (2011). Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends in Food Science & Technology, 22, 570–575. https://doi.org/10.1016/j.tifs.2011.05.007 Bresciani, A., Vanara, F., Pagliarini, E., Locatelli, M., Proserpio, C., Travaglia, F., Blandino, M., & Marti, A. (2023). Effect of enrichment of rice snacks with pulse seed coats on phenolic compound content, product features and consumer hedonic response. Food Chemistry, 398. https://doi.org/10.1016/j.foodchem.2022.133936 Camelo-Méndez, G. A., Agama-Acevedo, E., Sanchez-Rivera, M. M., & Bello-Pérez, L. A. (2016). Effect on in vitro starch digestibility of Mexican blue maize anthocyanins. Food Chemistry, 211, 281–284. https://doi.org/10.1016/j.foodchem.2016.05.024 Catalkaya, G., Venema, K., Lucini, L., Rocchetti, G., Delmas, D., Daglia, M., De Filippis, A., Xiao, H., Quiles, J. L., Xiao, J., & Capanoglu, E. (2020). Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Frontiers, 1(2), 109–133. https://doi.org/10.1002/fft2.25 Cervantes-Ramirez, J. G., Vasquez-Lara, F., Sanchez-Estrada, A., Troncoso-Rojas, R., Heredia-Olea, E., & Islas-Rubio, A. R. (2022). Arabinoxylans Release from Brewers’ Spent Grain Using Extrusion and Solid-State Fermentation with Fusarium oxysporum and the Antioxidant Capacity of the Extracts. Foods, 11(10). https://doi.org/10.3390/foods11101415 Chamizo-González, F., Gordillo, B., & Heredia, F. J. (2021). Elucidation of the 3D structure of grape seed 7S globulin and its interaction with malvidin 3-glucoside: A molecular modeling approach. Food Chemistry, 347(September 2020). https://doi.org/10.1016/j.foodchem.2021.129014 Chandrasekara, A., & Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. Journal of Functional Foods, 4(1), 226–237. https://doi.org/10.1016/j.jff.2011.11.001 Chávez, D. W. H., Ascheri, J. L. R., Carvalho, C. W. P., Godoy, R. L. O., & Pacheco, S. (2017). Sorghum and roasted coffee blends as a novel extruded product: Bioactive compounds and antioxidant capacity. Journal of Functional Foods, 29, 93–103. Chen, H., Zhao, C., Li, J., Hussain, S., Yan, S., & Wang, Q. (2018). Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT, 93, 204–211. https://doi.org/10.1016/j.lwt.2018.03.004 Chen, J., Chen, Y., & Ye, X. (2021). Lignans in diets. In Handbook of Dietary Phytochemicals (Vol. 3, pp. 1687–1708). Springer Nature. Chen, M. H., McClung, A. M., & Bergman, C. J. (2016). Concentrations of oligomers and polymers of proanthocyanidins in red and purple rice bran and their relationships to total phenolics, flavonoids, antioxidant capacity and whole grain color. Food Chemistry, 208, 279–287. https://doi.org/10.1016/j.foodchem.2016.04.004 Chen, Z., Świsłocka, R., Choińska, R., Marszałek, K., Dąbrowska, A., Lewandowski, W., & Lewandowska, H. (2024). Exploring the Correlation Between the Molecular Structure and Biological Activities of Metal–Phenolic Compound Complexes: Research and Description of the Role of Metal Ions in Improving the Antioxidant Activities of Phenolic Compounds. International Journal of Molecular Sciences, 25(21). https://doi.org/10.3390/ijms252111775 Cheng, L., Liu, X., Ma, Y., Huang, X., Zhang, X., Liu, J., Song, L., Qiao, M., Li, T., & Wang, T. (2024). Effects of different processing methods on phenolic compounds in flaxseed meal. Food Chemistry: X, 24. https://doi.org/10.1016/j.fochx.2024.101934 Cotacallapa-Sucapuca, M., Vega, E. N., Maieves, H. A., Berrios, J. D. J., Morales, P., Fernández-Ruiz, V., & Cámara, M. (2021). Extrusion process as an alternative to improve pulses products consumption. A review. Foods, 10(5), 1–23. https://doi.org/10.3390/foods10051096 Dangles, O. (2020). Le potentiel antioxydant des aliments : mythes et réalités. Cahiers de Nutrition et de Diététique, 55(4), 176–183. https://doi.org/10.1016/j.cnd.2020.06.001 Danilov, I., Vlajkov, V., Šumić, Z., Milić, A., Horecki, A. T., Dujković, T., Živanović, N., Simin, N., Lesjak, M., & Grahovac, J. (2024). Valorization of Strawberry Juice Production Wastewater: Possibilities for Polyphenols Recovery and Plant Biostimulant Production. Foods, 13(20). https://doi.org/10.3390/foods13203224 Debelo, H., Li, M., & Ferruzzi, M. G. (2020). Processing influences on food polyphenol profiles and biological activity. Current Opinion in Food Science, 32, 90–102. https://doi.org/10.1016/j.cofs.2020.03.001 Diamanti, A. C., Igoumenidis, P. E., Mourtzinos, I., Yannakopoulou, K., & Karathanos, V. T. (2017). Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins. Food Chemistry, 214, 61–66. https://doi.org/10.1016/j.foodchem.2016.07.072 Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: Chemical characteristics and biological activity. In Molecules (Vol. 26, Issue 17). MDPI. https://doi.org/10.3390/molecules26175377 dos Santos, T. P. R., Franco, C. M. L., do Carmo, E. L., Jane, J. lin, & Leonel, M. (2019). Effect of spray-drying and extrusion on physicochemical characteristics of sweet potato starch. Journal of Food Science and Technology, 56(1), 376–383. https://doi.org/10.1007/s13197-018-3498-y Dragan, S. R., Damian, G., Pah, A. M., Hayta, M., & Kahraman, K. (2021). Dietary fiber. In Handbook of Dietary Phytochemicals (Vol. 3, pp. 1431–1464). Springer Nature. https://doi.org/10.1007/978-981-15-4148-3 Drozdz, W., Boruczkowska, H., Boruczkowski, T., Tomaszewska-ciosk, E., & Zdybel, E. (2019). Use of blackcurrant and chokeberry press residue in snack products. Polish Journal of Chemical Technology, 21(1), 13–19. Drozdz, W., Tomaszewska-Ciosk, E., Zdybel, E., Boruczkowska, H., Boruczkowski, T., & Regiec, P. (2014). Effect of apple and rosehip pomaces on colour, total phenolics and antioxidant activity of corn extruded snacks. Polish Journal of Chemical Technology, 16(3), 7–11. https://doi.org/10.2478/pjct-2014-0042 Falfán Cortés, R. N., Guzmán, I. V., & Martínez Bustos, F. (2014). Effects of Some Extrusion Variables on Physicochemical Characteristics of Extruded Corn Starch-passion Fruit Pulp (Passiflora edulis) Snacks. Plant Foods for Human Nutrition, 69(4), 365–371. https://doi.org/10.1007/s11130-014-0443-8 Félix-Medina, J. V., Gutiérrez-Dorado, R., López-Valenzuela, J. A., López-Ángulo, G., Quintero-Soto, M. F., Perales-Sánchez, J. X. K., & Montes-Ávila, J. (2021). Nutritional, antioxidant and phytochemical characterization of healthy ready-to-eat expanded snack produced from maize/common bean mixture by extrusion. Lwt, 142(February). https://doi.org/10.1016/j.lwt.2021.111053 Félix-Medina, J. V., Montes-Ávila, J., Reyes-Moreno, C., Perales-Sánchez, J. X. K., Gómez-Favela, M. A., Aguilar-Palazuelos, E., & Gutiérrez-Dorado, R. (2020). Second-generation snacks with high nutritional and antioxidant value produced by an optimized extrusion process from corn/common bean flours mixtures. Lwt, 124(February). https://doi.org/10.1016/j.lwt.2020.109172 Fernandes, A., Mateus, N., & de Freitas, V. (2023). Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. In Foods (Vol. 12, Issue 5). MDPI. https://doi.org/10.3390/foods12051052 Ferruzzi, M. G., Hamaker, B. R., & Bordenave, N. (2020). Phenolic compounds are less degraded in presence of starch than in presence of proteins through processing in model porridges. Food Chemistry, 309(June 2019). https://doi.org/10.1016/j.foodchem.2019.125769 Fontes-Zepeda, A., Domínguez-Avila, J. A., Lopez-Martinez, L. X., Cruz-Valenzuela, M. R., Robles-Sánchez, R. M., Salazar-López, N. J., Ramírez-Wong, B., López-Díaz, J. A., Pareek, S., Villegas-Ochoa, M. A., & González-Aguilar, G. A. (2023). The Addition of Mango and Papaya Peels to Corn Extrudates Enriches Their Phenolic Compound Profile and Maintains Their Sensory Characteristics. Waste and Biomass Valorization, 14(3), 751–764. https://doi.org/10.1007/s12649-022-01898-4 Francisco, T., Pérez-Gregorio, R., Soares, S., Mateus, N., Centeno, F., de Fátima Teixeira, M., & de Freitas, V. (2021). Understanding the molecular interactions between a yeast protein extract and phenolic compounds. Food Research International, 143(October 2020). https://doi.org/10.1016/j.foodres.2021.110261 Garcia-Amezquita, L. E., Tejada-Ortigoza, V., Heredia-Olea, E., Serna-Saldívar, S. O., & Welti-Chanes, J. (2018). Differences in the dietary fiber content of fruits and their by-products quantified by conventional and integrated AOAC official methodologies. Journal of Food Composition and Analysis, 67, 77–85. https://doi.org/10.1016/j.jfca.2018.01.004 Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. In Journal of the Royal Society Interface (Vol. 9, Issue 76, pp. 2749–2766). Royal Society. https://doi.org/10.1098/rsif.2012.0341 Giuberti, G., Rocchetti, G., & Lucini, L. (2020). Interactions between phenolic compounds, amylolytic enzymes and starch: an updated overview. Current Opinion in Food Science, 31, 102–113. https://doi.org/10.1016/j.cofs.2020.04.003 Gong, X., Li, X., Xia, Y., Xu, J., Li, Q., Zhang, C., & Li, M. (2020). Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms. Trends in Food Science and Technology, 103(February), 304–320. https://doi.org/10.1016/j.tifs.2020.07.026 Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends in Food Science and Technology, 99, 284–294. https://doi.org/10.1016/j.tifs.2020.03.012 Gurak, P. D., De Bona, G. S., Tessaro, I. C., & Marczak, L. D. F. (2014). Jaboticaba pomace powder obtained as a co-product of juice extraction: A comparative study of powder obtained from peel and whole fruit. Food Research International, 62, 786–792. https://doi.org/10.1016/j.foodres.2014.04.042 Güven, Ö. (2016). Effect of extrusion on bioactive compounds found in artichoke leaf powder and on their in vitro bioaccesibilities [Master thesis. Middle East Technical University, Ankara, Turkey]. https://etd.lib.metu.edu.tr/upload/12620246/index.pdfhttps://etd.lib.metu.edu.tr/upload/12620246/index.pdf Guven, O., Sensoy, I., Senyuva, H., & Karakaya, S. (2018). Food processing and digestion: The effect of extrusion process on bioactive compounds in extrudates with artichoke leaf powder and resulting in vitro cynarin and cynaroside bioaccessibility. Lwt, 90(2017), 232–237. https://doi.org/10.1016/j.lwt.2017.12.042 Guzar, I. (2012). Effect of Starch-Polyphenol Interactions on Starch Hydrolysis by. Master thesis. University of Guelph, Guelph, Ontario, Canada. Hashemian, S., Elhamirad, A. H., Milani, E., Shafafi Zenoozian, M., & Armin, M. (2025). Functional ready-to-eat cereal-based snacks supplemented with food by-products. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-025-06247-6 Hashempour-Baltork, F., Torbati, M., Azadmard-Damirchi, S., & Savage, G. P. (2018). Quality properties of puffed corn snacks incorporated with sesame seed powder. Food Science and Nutrition, 6(1), 85–93. https://doi.org/10.1002/fsn3.532 Hellemans, T., Nekhudzhiga, H., Van Bockstaele, F., Wang, Y. J., Emmambux, M. N., & Eeckhout, M. (2020). Variation in amylose concentration to enhance wheat flour extrudability. Journal of Cereal Science, 95. https://doi.org/10.1016/j.jcs.2020.102992 Hellström, J. K., Törrönen, A. R., & Mattila, P. H. (2009). Proanthocyanidins in common food products of plant origin. Journal of Agricultural and Food Chemistry, 57(17), 7899–7906. https://doi.org/10.1021/jf901434d Herrera-Cazares, L. A., Luzardo-Ocampo, I., Ramírez-Jiménez, A. K., Gutiérrez-Uribe, J. A., Campos-Vega, R., & Gaytán-Martínez, M. (2021). Influence of extrusion process on the release of phenolic compounds from mango (Mangifera indica L.) bagasse-added confections and evaluation of their bioaccessibility, intestinal permeability, and antioxidant capacity. Food Research International, 148. https://doi.org/10.1016/j.foodres.2021.110591 Höglund, E., Eliasson, L., Oliveira, G., Almli, V. L., Sozer, N., & Alminger, M. (2018). Effect of drying and extrusion processing on physical and nutritional characteristics of bilberry press cake extrudates. LWT - Food Science and Technology, 92, 422–428. https://doi.org/10.1016/j.lwt.2018.02.042 Huang, V. T., & Perdon, A. A. (2020). Major changes in cereal biopolymers during ready-to-eat cereal processing. In Breakfast Cereals and How They Are Made: Raw Materials, Processing, and Production (pp. 109–140). Elsevier Inc. https://doi.org/10.1016/B978-0-12-812043-9.00006-0 Huang, X., Liu, H., Ma, Y., Mai, S., & Li, C. (2022). Effects of Extrusion on Starch Molecular Degradation, Order–Disorder Structural Transition and Digestibility—A Review. In Foods (Vol. 11, Issue 16). MDPI. https://doi.org/10.3390/foods11162538 Huo, J., Wang, L., Ma, J., Yue, X., Wang, K., Ma, X., Yu, X., & Xiao, Z. (2025). Different effects of polyphenols on hydration, pasting and rheological properties of rice starch under extrusion condition: From the alterations in starch structure. Food Chemistry, 465. https://doi.org/10.1016/j.foodchem.2024.142002 Jakobek, L. (2015). Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chemistry, 175, 556–567. https://doi.org/10.1016/j.foodchem.2014.12.013 Jozinović, A., Šubarić, D., Ačkar, Ð., Babić, J., Orkić, V., Guberac, S., & Miličević, B. (2021). Food industry by-products as raw materials in the production of value-added corn snack products. Foods, 10(5). https://doi.org/10.3390/foods10050946 Juárez-Barrientos, J. M., Hernández-Santos, B., Torruco-Uco, J. G., Martínez-Sánchez, C. E., Herman-Lara, E., Ramírez-Rivera, E. J., Ramírez-Figueroa, E., Avendaño-Apolinar, A. V., Cabal-Prieto, A., & Rodríguez-Miranda, J. (2025). Optimization of Extrusion Cooking for Enhanced Physicochemical Properties in Jackfruit Seed (Artocarpus altilis) and Nixtamalized Maize (Zea mays L.) Flour Blend. Processes, 13(3). https://doi.org/10.3390/pr13030772 Kaisangsri, N., Kowalski, R. J., Wijesekara, I., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2016). Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT, 68, 391–399. https://doi.org/10.1016/j.lwt.2015.12.016 Kardum, N., & Glibetic, M. (2018). Polyphenols and Their Interactions With Other Dietary Compounds: Implications for Human Health. In Advances in Food and Nutrition Research (1st ed., Vol. 84). Elsevier Inc. https://doi.org/10.1016/bs.afnr.2017.12.001 Kasprzak, K., Oniszczuk, T., Agnieszka, W., Waksmundzka, M., Olech, M., Nowak, R., Polak, R., & Oniszczuk, A. (2018). Phenolic acid content and antioxidant properties of extruded corn snacks enriched with Kale. Journal of Analytical Methods in Chemistry, Article ID, 7 pages. Khanal, R. C., Howard, L. R., Brownmiller, C. R., & Prior, R. L. (2009). Influence of extrusion processing on procyanidin composition and total anthocyanin contents of blueberry pomace. Journal of Food Science, 74(2), 52–58. https://doi.org/10.1111/j.1750-3841.2009.01063.x Khanal, R. C., Howard, L. R., & Prior, R. L. (2009). Procyanidin Content of Grape Seed and Pomace, and Total Anthocyanin Content of Grape Pomace as Affected by Extrusion Processing. Journal of Food Science, 74(6). https://doi.org/10.1111/j.1750-3841.2009.01221.x Kim, Y., Kim, Y. J., & Shin, Y. (2024). Comparative Analysis of Polyphenol Content and Antioxidant Activity of Different Parts of Five Onion Cultivars Harvested in Korea. Antioxidants, 13(2). https://doi.org/10.3390/antiox13020197 Kolniak, J., Kita, A., Peksa, A., Wawrzyniak, A., Hamulka, J., Jeznach, M., Danilcenko, H., & Jariene, E. (2017). Analysis of the content of bioactive compounds in selected flours and enriched extruded corn products. Journal of Food Composition and Analysis, 64, 147–155. https://doi.org/10.1016/j.jfca.2017.08.008 Korkerd, S., Wanlapa, S., Puttanlek, C., Uttapap, D., & Rungsardthong, V. (2016). Expansion and functional properties of extruded snacks enriched with nutrition sources from food processing by-products. Journal of Food Science and Technology, 53(1), 561–570. https://doi.org/10.1007/s13197-015-2039-1 Kumar, V., Sinha, A. K., Makkar, H. P. S., de Boeck, G., & Becker, K. (2012). Dietary Roles of Non-Starch Polysachharides in Human Nutrition: A Review. In Critical Reviews in Food Science and Nutrition (Vol. 52, Issue 10, pp. 899–935). https://doi.org/10.1080/10408398.2010.512671 Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., & Rascón-Chu, A. (2018). Pectin and pectin-based composite materials: Beyond food texture. In Molecules (Vol. 23, Issue 4). MDPI AG. https://doi.org/10.3390/molecules23040942 Le Bourvellec, C., Bouzerzour, K., Ginies, C., Regis, S., Plé, Y., & Renard, C. M. G. C. (2011). Phenolic and polysaccharidic composition of applesauce is close to that of apple flesh. Journal of Food Composition and Analysis, 24(4–5), 537–547. https://doi.org/10.1016/j.jfca.2010.12.012 Le Bourvellec, C., & Renard, C. M. G. C. (2012). Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Critical Reviews in Food Science and Nutrition, 52(3), 213–248. https://doi.org/10.1080/10408398.2010.499808 Lee, D. S., Kim, Y., Song, Y., Lee, J. H., Lee, S., & Yoo, S. H. (2016). Development of a gluten-free rice noodle by utilizing protein-polyphenol interaction between soy protein isolate and extract of Acanthopanax sessiliflorus. Journal of the Science of Food and Agriculture, 96(3), 1037–1043. https://doi.org/10.1002/jsfa.7193 Leonard, W., Zhang, P., Ying, D., & Fang, Z. (2020). Application of extrusion technology in plant food processing byproducts: An overview. Comprehensive Reviews in Food Science and Food Safety, 19(1), 218–246. https://doi.org/10.1111/1541-4337.12514 Leyva-Corral, J., Quintero-Ramos, A., Camacho-Dávila, A., Zazueta-Morales, J. de J., Aguilar-Palazuelos, E., Ruiz-Gutierrez, M., Meléndez-Pizarro, C., & Ruiz-Anchondo, T. D. J. (2016). Polyphenolic compound stability and antioxidant capacity of apple pomace in an extruded cereal. LWT - Food Science and Technology, 65, 228–236. https://doi.org/10.1016/j.lwt.2015.07.073 Li, M., Hasjim, J., Xie, F., Halley, P. J., & Gilbert, R. G. (2014). Shear degradation of molecular, crystalline, and granular structures of starch during extrusion. Starch/Staerke, 66(7–8), 595–605. https://doi.org/10.1002/star.201300201 Li, S., Chen, W., Zongo, A. W.-S., Chen, Y., Liang, H., Li, J., & Li, B. (2023). Effects of non-starch polysaccharide on starch gelatinization and digestibility: a review. Food Innovation and Advances, 2(4), 302–312. https://doi.org/10.48130/fia-2023-0029 Li, Y., Niu, L., Wu, L., Li, D., Sun, C., & Xiao, J. (2023). Polyphenol-fortified extruded sweet potato starch vermicelli: Slow-releasing polyphenols is the main factor that reduces the starch digestibility. International Journal of Biological Macromolecules, 253. https://doi.org/10.1016/j.ijbiomac.2023.127584 Liu, G., Ying, D., Guo, Baoyan, G., Cheng, L. J., May, B., Bird, T., Sanguansri, L., Cao, Y., & Augustin, M. A. (2019). Extrusion of apple pomace increases antioxidant activity upon in vitro digestion. Food and Function, 10(2), 951–963. https://doi.org/10.1039/C8FO01083H Liu, W. C., Halley, P. J., & Gilbert, R. G. (2010). Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules, 43(6), 2855–2864. https://doi.org/10.1021/ma100067x Liu, X., Le Bourvellec, C., Guyot, S., & Renard, C. M. G. C. (2021). Reactivity of flavanols: Their fate in physical food processing and recent advances in their analysis by depolymerization. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4841–4880. https://doi.org/10.1111/1541-4337.12797 Liu, X., Le Bourvellec, C., & Renard, C. M. G. C. (2020). Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3574–3617. https://doi.org/10.1111/1541-4337.12632 Lohani, U. C., & Muthukumarappan, K. (2017a). Effect of Extrusion Processing Parameters on Antioxidant, Textural and Functional Properties of Hydrodynamic Cavitated Corn Flour, Sorghum Flour and Apple Pomace-Based Extrudates. Journal of Food Process Engineering, 40(3). https://doi.org/10.1111/jfpe.12424 Lohani, U. C., & Muthukumarappan, K. (2017b). Process optimization for antioxidant enriched sorghum flour and apple pomace based extrudates using liquid CO2 assisted extrusion. LWT - Food Science and Technology, 86, 544–554. https://doi.org/10.1016/j.lwt.2017.08.034 Loix, C., Huybrechts, M., Vangronsveld, J., Gielen, M., Keunen, E., & Cuypers, A. (2017). Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. In Frontiers in Plant Science (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/fpls.2017.01867 Lucas, B. F., Guelpa, R., Vaihinger, M., Brunner, T., Costa, J. A. V., & Denkel, C. (2022). Extruded snacks enriched with açaí berry: physicochemical properties and bioactive constituents. Food Science and Technology (Brazil), 42. https://doi.org/10.1590/fst.14822 Lund, M. N. (2021). Reactions of plant polyphenols in foods: Impact of molecular structure. Trends in Food Science and Technology, 112(March), 241–251. https://doi.org/10.1016/j.tifs.2021.03.056 Manco, A., Gerardi, C., Romano, G., D’Amico, L., Blanco, A., Milano, F., Di Sansebastiano, G. Pietro, Balech, R., & Laddomada, B. (2023). Phenolic profile of whole seeds and seed fractions of lentils and its impact on antioxidant activity. Food Bioscience, 54. https://doi.org/10.1016/j.fbio.2023.102887 Medina-Rendon, E., Beltran-Medina, E., Guatemala-Morales, G., Padilla-Camberos, E., Corona-González, R., Mondragón-Cortez, P., & Arriola-Guevara, E. (2023). Optimization of Extrusion Conditions for an Extruded Food Enriched with Mango By-Products (Mangifera indica var. Tommy Atkins) via Response Surface Methodology. Processes, 11(11). https://doi.org/10.3390/pr11113182 Ménabréaz, T., Dorsaz, M., Bocquel, D., Udrisard, I., Kosińska-Cagnazzo, A., & Andlauer, W. (2021). Goji berry and whey protein concentrate enriched rice extrudates-physical properties and accessibility of bioactives. Polish Journal of Food and Nutrition Sciences, 71(1), 29–37. https://doi.org/10.31883/pjfns/131269 Méndez-García, S., Martínez-Flores, H. E., & Morales-Sánchez, E. (2011). Effect of extrusion parameters on some properties of dietary fiber from lemon (Citrus aurantifolia Swingle) residues. African Journal of Biotechnology, 10(73), 16589–16593. https://doi.org/10.5897/ajb11.1582 Miao, M., Jiang, B., Jiang, H., Zhang, T., & Li, X. (2015). Interaction mechanism between green tea extract and human a-amylase for reducing starch digestion. Food Chemistry, 186, 20–25. https://doi.org/10.1016/j.foodchem.2015.02.049 Mironeasa, S., Coţovanu, I., Mironeasa, C., & Ungureanu-Iuga, M. (2023). A Review of the Changes Produced by Extrusion Cooking on the Bioactive Compounds from Vegetal Sources. In Antioxidants (Vol. 12, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/antiox12071453 Mishra, P., Gupta, E., & Gupta, K. (2022). Response Surface Methodology and Textural Profile Analysis for Optimization of Fruit Peel-Based Extruded Snack (Elbow Macaroni). Journal of Food Quality, 2022. https://doi.org/10.1155/2022/5881459 Mitrus, M., Combrzyński, M., Biernacka, B., Wójtowicz, A., Milanowski, M., Kupryaniuk, K., Gancarz, M., Soja, J., & Różyło, R. (2023). Fresh Broccoli in Fortified Snack Pellets: Extrusion-Cooking Aspects and Physical Characteristics. Applied Sciences (Switzerland), 13(14). https://doi.org/10.3390/app13148138 Mohamad Mazlan, M., Talib, R. A., Taip, F. S., Chin, N. L., Sulaiman, R., Shukri, R., & Mohd Nor, M. Z. (2020). Changes in the physical properties and specific mechanical energy of corn-mango peel extrudates. CYTA - Journal of Food, 18(1), 417–426. https://doi.org/10.1080/19476337.2020.1767693 Mohamed, I. O. (2023). Interaction of starch with some food macromolecules during the extrusion process and its effect on modulating physicochemical and digestible properties. A review. In Carbohydrate Polymer Technologies and Applications (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/j.carpta.2023.100294 Morales, P., Cebadera-Miranda, L., Cámara, R. M., Reis, F. S., Barros, L., Berrios, J. D. J., Ferreira, I. C. F. R., & Cámara, M. (2015). Lentil flour formulations to develop new snack-type products by extrusion processing: Phytochemicals and antioxidant capacity. Journal of Functional Foods, 19, 537–544. https://doi.org/10.1016/j.jff.2015.09.044 Nag, S., & Majumder, S. (2022). Starch, gallic acid, their inclusion complex and their effects in diabetes and other diseases—A review. Food Science and Nutrition, September, 1–10. https://doi.org/10.1002/fsn3.3208 Nahar, L., Xiao, J., & Sarker, S. D. (2021). Introduction of phytonutrients. In Handbook of Dietary Phytochemicals (Vol. 1, pp. 1–18). Springer Nature. https://doi.org/10.1007/978-981-15-4148-3 Nan, Z. D., Shang, Y., Zhu, Y. D., Zhang, H., Sun, R. R., Tian, J. J., Jiang, Z. B., Ma, X. L., & Bai, C. (2025). Systematic review of natural coumarins in plants (2019–2024): Chemical structures and pharmacological activities. In Phytochemistry (Vol. 235). Elsevier Ltd. https://doi.org/10.1016/j.phytochem.2025.114480 Naumann, S., Schweiggert-Weisz, U., Martin, A., Schuster, M., & Eisner, P. (2021). Effects of extrusion processing on the physiochemical and functional properties of lupin kernel fibre. Food Hydrocolloids, 111. https://doi.org/10.1016/j.foodhyd.2020.106222 Neder-Suárez, D., Lardizabal-Gutiérrez, D., Zazueta-Morales, J. de J., Meléndez-Pizarro, C. O., Delgado-Nieblas, C. I., Wong, B. R., Gutiérrez-Méndez, N., Hernández-Ochoa, L. R., & Quintero-Ramos, A. (2021). Anthocyanins and functional compounds change in a third-generation snacks prepared using extruded blue maize, black bean, and chard: An optimization. Antioxidants, 10(9). https://doi.org/10.3390/antiox10091368 Neder-Suárez, D., Vázquez-Rodríguez, J. A., González-Martínez, B. E., Meléndez-Pizarro, C. O., Hernández-Ochoa, L. R., Murowaniecki-Otero, D., Rodríguez-Roque, M. J., & Quintero-Ramos, A. (2024). Effect of using alternative flours on the development and characteristics of a third-generation snacks. Food Chemistry Advances, 4. https://doi.org/10.1016/j.focha.2023.100571 Nguyen, S. N., & Beta, T. (2024). Cereal-derived polyphenols and their bioactive properties. In Current Opinion in Food Science (Vol. 56). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2024.101136 Nicolás-García, M., Perucini-Avendaño, M., Jiménez-Martínez, C., Perea-Flores, M. de J., Gómez-Patiño, M. B., Arrieta-Báez, D., & Dávila-Ortiz, G. (2021). Bean phenolic compound changes during processing: Chemical interactions and identification. Journal of Food Science, 86(3), 643–655. https://doi.org/10.1111/1750-3841.15632 Núñez-Gómez, V., González-Barrio, R., & Periago, M. J. (2023). Interaction between Dietary Fibre and Bioactive Compounds in Plant By-Products: Impact on Bioaccessibility and Bioavailability. In Antioxidants (Vol. 12, Issue 4). MDPI. https://doi.org/10.3390/antiox12040976 Offiah, V., Kontogiorgos, V., & Falade, K. O. (2019). Extrusion processing of raw food materials and by-products: A review. Critical Reviews in Food Science and Nutrition, 59(18), 2979–2998. https://doi.org/10.1080/10408398.2018.1480007 Oladiran, D. A., & Emmambux, N. M. (2018). Nutritional and Functional Properties of Extruded Cassava-Soy Composite with Grape Pomace. Starch/Staerke, 70(7–8), 1–11. https://doi.org/10.1002/star.201700298 Omoba, O. S., Olagunju, A. I., Oluwajuyitan, T. D., & Akinrinlola, O. F. (2024). Functional extruded snacks from amaranth, soycake and shallot flours: Nutritional composition, physicochemical and antioxidant properties. Measurement: Food, 100194. https://doi.org/10.1016/j.meafoo.2024.100194 Ondo, S. E., & Ryu, G. H. (2013). Physicochemical and antioxidant properties of extruded cornmeal with natural cocoa powder. Food Science and Biotechnology, 22(SUPPL. 1), 167–175. https://doi.org/10.1007/s10068-013-0063-3 Orozco-Angelino, X., Espinosa-Ramírez, J., & Serna-Saldívar, S. O. (2023). Extrusion as a tool to enhance the nutritional and bioactive potential of cereal and legume by-products. Food Research International, 169. https://doi.org/10.1016/j.foodres.2023.112889 Palafox-Carlos, H., Ayala-Zavala, J. F., & González-Aguilar, G. A. (2011). The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. Journal of Food Science, 76(1). https://doi.org/10.1111/j.1750-3841.2010.01957.x Pasqualone, A., Costantini, M., Coldea, T. E., & Summo, C. (2020). Use of Legumes in Extrusion Cooking: A Review. Foods, 9(7), 1–17. https://doi.org/10.3390/foods9070958 Patil, S. S., & Kaur, C. (2018). Current trends in extrusion: Development of functional foods and novel ingredients. Food Science and Technology Research, 24(1), 23–34. https://doi.org/10.3136/fstr.24.23 Pinarli, B., Simge Karliga, E., Ozkan, G., & Capanoglu, E. (2020). Interaction of phenolics with food matrix: In vitro and in vivo approaches. Mediterranean Journal of Nutrition and Metabolism, 13(1), 63–74. https://doi.org/10.3233/MNM-190362 Pitts, K. F., McCann, T. H., Mayo, S., Favaro, J., & Day, L. (2016). Effect of the Sugar Replacement by Citrus Fibre on the Physical and Structural Properties of Wheat-Corn Based Extrudates. Food and Bioprocess Technology, 9(11), 1803–1811. https://doi.org/10.1007/s11947-016-1764-4 Promsakha na Sakon Nakhon, P., Jangchud, K., Jangchud, A., & Charunuch, C. (2018). Optimization of pumpkin and feed moisture content to produce healthy pumpkin-germinated brown rice extruded snacks. Agriculture and Natural Resources, 52(6), 550–556. https://doi.org/10.1016/j.anres.2018.11.018 Qi, Y., Zhang, H., Awika, J. M., Wang, L., Qian, H., & Gu, L. (2016). Depolymerization of sorghum procyanidin polymers into oligomers using HCl and epicatechin: Reaction kinetics and optimization. Journal of Cereal Science, 70, 170–176. https://doi.org/10.1016/j.jcs.2016.06.002 Qiu, C., Hu, H., Chen, B., Lin, Q., Ji, H., & Jin, Z. (2024). Research Progress on the Physicochemical Properties of Starch-Based Foods by Extrusion Processing. In Foods (Vol. 13, Issue 22). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/foods13223677 Rathod, R. P., & Annapure, U. S. (2017). Antioxidant activity and polyphenolic compound stability of lentil-orange peel powder blend in an extrusion process. Journal of Food Science and Technology, 54(4), 954–963. https://doi.org/10.1007/s13197-016-2383-9 Rațu, R. N., Veleșcu, I. D., Stoica, F., Usturoi, A., Arsenoaia, V. N., Crivei, I. C., Postolache, A. N., Lipșa, F. D., Filipov, F., Florea, A. M., Chițea, M. A., & Brumă, I. S. (2023). Application of Agri-Food By-Products in the Food Industry. In Agriculture (Switzerland) (Vol. 13, Issue 8). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/agriculture13081559 Redgwell, R. J., Curti, D., Robin, F., Donato, L., & Pineau, N. (2011). Extrusion-induced changes to the chemical profile and viscosity generating properties of citrus fiber. Journal of Agricultural and Food Chemistry, 59(15), 8272–8279. https://doi.org/10.1021/jf201845b Reis, S. F., Rai, D. K., & Abu-Ghannam, N. (2014). Apple pomace as a potential ingredient for the development of new functional foods. International Journal of Food Science and Technology, 49(7), 1743–1750. https://doi.org/10.1111/ijfs.12477 Renard, C. M. G. C., Watrelot, A. A., & Le Bourvellec, C. (2017). Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. In Trends in Food Science and Technology (Vol. 60, pp. 43–51). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2016.10.022 Renoldi, N., Peighambardoust, S. H., & Peressini, D. (2021). The effect of rice bran on physicochemical, textural and glycaemic properties of ready-to-eat extruded corn snacks. International Journal of Food Science and Technology, 56(7), 3235–3244. https://doi.org/10.1111/ijfs.14939 Reyes Moreno, C., Reyes Fernández, P. C., Cuevas Rodríguez, E. O., Milán Carrillo, J., & Mora Rochín, S. (2018). Changes in Nutritional Properties and Bioactive Compounds in Cereals During Extrusion Cooking. In Extrusion of Metals, Polymers and Food Products: Vol. I (p. 13). InTech. https://doi.org/10.5772/intechopen.68753 Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., & Elez-Martínez, P. (2018). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. In Critical Reviews in Food Science and Nutrition (Vol. 58, Issue 15, pp. 2531–2548). Taylor and Francis Inc. https://doi.org/10.1080/10408398.2017.1331200 Ribeiro de Barros, F. A. (2012). Sorghum tannins: Interaction with starch and its effects on in vitro starch digestibility. Ribeiro, G., Piñero, M. Y., Parle, F., Blanco, B., & Roman, L. (2024). Optimizing Screw Speed and Barrel Temperature for Textural and Nutritional Improvement of Soy-Based High-Moisture Extrudates. Foods, 13(11). https://doi.org/10.3390/foods13111748 Ribeiro Oliveira, A., Chaves Ribeiro, A. E., Resende Oliveira, É., Oliveira Ribeiro, K., Costa Garcia, M., Careli-Gondim, Í., Soares Soares Júnior, M., & Caliari, M. (2020). Physicochemical, microbiological and sensory characteristics of snacks developed from broken rice grains and turmeric powder. International Journal of Food Science and Technology, 55(7), 2719–2729. https://doi.org/10.1111/ijfs.14525 Robin, F., Schuchmann, H. P., & Palzer, S. (2012). Dietary fiber in extruded cereals: Limitations and opportunities. In Trends in Food Science and Technology (Vol. 28, Issue 1, pp. 23–32). https://doi.org/10.1016/j.tifs.2012.06.008 Ruiz-Armenta, X. A., Zazueta-Morales, J. de J., Delgado-Nieblas, C. I., Carrillo-López, A., Aguilar-Palazuelos, E., & Camacho-Hernández, I. L. (2019). Effect of the extrusion process and expansion by microwave heating on physicochemical, phytochemical, and antioxidant properties during the production of indirectly expanded snack foods. Journal of Food Processing and Preservation, 43(12), 1–13. https://doi.org/10.1111/jfpp.14261 Ruiz-Gutiérrez, M. G., Amaya-Guerra, C. A., Quintero-Ramos, A., Pérez-Carrillo, E., Ruiz-Anchondo, T. D. J., Báez-González, J. G., & Meléndez-Pizarro, C. O. (2015). Effect of extrusion cooking on bioactive compounds in encapsulated red cactus pear powder. Molecules, 20(5), 8875–8892. https://doi.org/10.3390/molecules20058875 Ruiz-Gutiérrez, M. G., Sánchez-Madrigal, M. A., & Quintero-Ramos, A. (2018). The extrusion cooking process for the development of functional foods. In Extrusion of Metals, Polymers and Food Products. Intech. https://doi.org/10.5772/intechopen.68741 Salazar-López, N. J., González-Aguilar, G., Rouzaud-Sández, O., & Robles-Sánchez, M. (2018). Technologies applied to sorghum (Sorghum bicolor l. moench): Changes in phenolic compounds and antioxidant capacity. Food Science and Technology, 38(3), 369–382. https://doi.org/10.1590/fst.16017 Samyor, D., Deka, S. C., & Das, A. B. (2018). Effect of extrusion conditions on the physicochemical and phytochemical properties of red rice and passion fruit powder based extrudates. Journal of Food Science and Technology, 55(12), 5003–5013. https://doi.org/10.1007/s13197-018-3439-9 Santiago, G. de L., de Oliveira, I. G., Horst, M. A., Naves, M. M. V., & Silva, M. R. (2018). Peel and pulp of baru (Dipteryx Alata Vog.) provide high fiber, phenolic content and antioxidant capacity. Food Science and Technology (Brazil), 38(2), 244–249. https://doi.org/10.1590/1678-457X.36416 Santos-Zea, L., Villela-Castrejón, J., & Gutiérrez-Uribe, J. A. (2018). Bound Phenolics in Foods (pp. 1–18). https://doi.org/10.1007/978-3-319-54528-8_13-1 Sanusi, M. S., Sunmonu, M. O., Alasi, S. O., Adebiyi, A. A., & Tajudeen, A. A. (2023). Composition, bioactive constituents and glycemic index of brown rice-watermelon seeds extruded snacks as stimulated by extrusion conditions. Applied Food Research, 3(1). https://doi.org/10.1016/j.afres.2023.100287 Šárka, E., Sluková, M., & Henke, S. (2021). Changes in phenolics during cooking extrusion: A review. Foods, 10(9). https://doi.org/10.3390/foods10092100 Šárka, E., Sluková, M., & Smrčková, P. (2020). New food compositions to increase the content of phenolic compounds in extrudates. Czech Journal of Food Sciences, 38(6), 347–358. https://doi.org/10.17221/223/2020-CJFS Sarmiento-Torres, L. F., Murrillo-Franco, S. L., Galvis-Nieto, J. D., Rodríguez, L. J., Igual, M., García-Segovia, P., & Orrego, C. E. (2025). Physicochemical and Functional Properties and In Vitro Digestibility of Green Banana Flour-Based Snacks Enriched With Mango and Passion Fruit Pulps by Extrusion Cooking. International Journal of Food Science, 2025(1). https://doi.org/10.1155/ijfo/5204346 Saura-Calixto, F., Serrano, J., & Goñi, I. (2007). Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry, 101(2), 492–501. https://doi.org/10.1016/j.foodchem.2006.02.006 Sayanjali, S. (2016). The incorporation of Curcuminoids in oat fibre extruded products. Doctoral thesis. University of Melbourne, Melbourne, Victoria, Australia. Schmid, V., Mayer-Miebach, E., Behsnilian, D., Briviba, K., Karbstein, H. P., & Emin, M. A. (2022). Enrichment of starch-based extruded cereals with chokeberry (Aronia melanocarpa) pomace: Influence of processing conditions on techno-functional and sensory related properties, dietary fibre and polyphenol content as well as in vitro digestibility. Lwt, 154, 112610. https://doi.org/10.1016/j.lwt.2021.112610 Schmid, V., Steck, J., Mayer-Miebach, E., Behsnilian, D., Briviba, K., Bunzel, M., Karbstein, H. P., & Emin, M. A. (2020). Impact of defined thermomechanical treatment on the structure and content of dietary fiber and the stability and bioaccessibility of polyphenols of chokeberry (Aronia melanocarpa) pomace. Food Research International, 134(2019), 109232. https://doi.org/10.1016/j.foodres.2020.109232 Schmid, V., Steck, J., Mayer-Miebach, E., Behsnilian, D., Bunzel, M., Karbstein, H. P., & Emin, M. A. (2021). Extrusion processing of pure chokeberry (Aronia melanocarpa) pomace: impact on dietary fiber profile and bioactive compounds. Foods, 10(3). https://doi.org/10.3390/foods10030518 Schmid, V., Trabert, A., Schäfer, J., Bunzel, M., Karbstein, H. P., & Emin, M. A. (2020). Modification of apple pomace by extrusion processing: Studies on the composition, polymer structures, and functional properties. Foods, 9(10). https://doi.org/10.3390/foods9101385 Shahidi, F., & Hossain, A. (2023). Importance of Insoluble-Bound Phenolics to the Antioxidant Potential Is Dictated by Source Material. In Antioxidants (Vol. 12, Issue 1). MDPI. https://doi.org/10.3390/antiox12010203 Shahidi, F., & Yeo, J. D. (2016). Insoluble-bound phenolics in food. Molecules, 21(9). https://doi.org/10.3390/molecules21091216 Shevkani, K., Singh, N., Rattan, B., Singh, J. P., Kaur, A., & Singh, B. (2019). Effect of chickpea and spinach on extrusion behavior of corn grit. Journal of Food Science and Technology, 56(4), 2257–2266. https://doi.org/10.1007/s13197-019-03712-x Siemińska-Kuczer, A., Szymańska-Chargot, M., & Zdunek, A. (2022). Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chemistry, 373, 131487. https://doi.org/10.1016/j.foodchem.2021.131487 Sieniawska, E., Ortan, A., Fierascu, I., & Fierascu, R. C. (2021). Procyanidins in food. In Handbook of Dietary Phytochemicals (Vol. 3, pp. 1783–1822). Springer Nature. Sir Elkhatim, K. A., Elagib, R. A. A., & Hassan, A. B. (2018). Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Science and Nutrition, 6(5), 1214–1219. https://doi.org/10.1002/fsn3.660 Sirerol, J. A., Rodríguez, M. L., Mena, S., Asensi, M. A., Estrela, J. M., & Ortega, A. L. (2016). Role of Natural Stilbenes in the Prevention of Cancer. Oxidative Medicine and Cellular Longevity, 2016(1), 1–15. https://doi.org/10.1155/2016/3128951 Sivam, A. S., Sun-Waterhouse, D., Perera, C. O., & Waterhouse, G. I. N. (2013). Application of FT-IR and Raman spectroscopy for the study of biopolymers in breads fortified with fibre and polyphenols. Food Research International, 50(2), 574–585. https://doi.org/10.1016/j.foodres.2011.03.039 Sójka, M., Klimczak, E., Macierzyński, J., & Kołodziejczyk, K. (2013). Nutrient and polyphenolic composition of industrial strawberry press cake. European Food Research and Technology, 237(6), 995–1007. https://doi.org/10.1007/s00217-013-2070-2 Stephen, A. M., Champ, M. M. J., Cloran, S. J., Fleith, M., Van Lieshout, L., Mejborn, H., & Burley, V. J. (2017). Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutrition Research Reviews, 30(2), 149–190. https://doi.org/10.1017/S095442241700004X Sule, S., Okafor, G. I., Momoh, O. C., Gbaa, S. T., & Amonyeze, A. O. (2024). Applications of food extrusion technology. MOJ Food Processing & Technology, 12(1), 74–84. https://doi.org/10.15406/mojfpt.2024.12.00301 Sun, L., Warren, F. J., & Gidley, M. J. (2018). Soluble polysaccharides reduce binding and inhibitory activity of tea polyphenols against porcine pancreatic α-amylase. Food Hydrocolloids, 79, 63–70. https://doi.org/10.1016/j.foodhyd.2017.12.011 Suresh, A., Shobna, Salaria, M., Morya, S., Khalid, W., Afzal, F. A., Khan, A. A., Safdar, S., Khalid, M. Z., & Mukonzo Kasongo, E. L. (2024). Dietary fiber: an unmatched food component for sustainable health. In Food and Agricultural Immunology (Vol. 35, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/09540105.2024.2384420 Tangsrianugul, N., Hongsanyatham, S., Kapcum, C., Sungayuth, N., Boonsanong, N., Somprasong, N., Smith, S. M., Amornsakchai, T., Pinyo, J., & Wongsagonsup, R. (2023). Physicochemical and sensory properties of corn grits and pineapple stem starch-based extruded snacks enriched with oyster mushroom powder. International Journal of Food Science and Technology, 58(3), 1528–1540. https://doi.org/10.1111/ijfs.16322 Tas, A. A., & Shah, A. U. (2021). The replacement of cereals by legumes in extruded snack foods: Science, technology and challenges. Trends in Food Science and Technology, 116(July), 701–711. https://doi.org/10.1016/j.tifs.2021.08.016 Timm, M., Offringa, L. C., Van Klinken, B. J. W., & Slavin, J. (2023). Beyond Insoluble Dietary Fiber: Bioactive Compounds in Plant Foods. In Nutrients (Vol. 15, Issue 19). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/nu15194138 Tonyali, B., Sensoy, I., & Karakaya, S. (2020). Effects of processing on onion skin powder added extrudates. Journal of Food Science and Technology, 57(9), 3426–3435. https://doi.org/10.1007/s13197-020-04376-8 Tse, T., & Schendel, R. R. (2023). Cereal Grain Arabinoxylans: Processing Effects and Structural Changes during Food and Beverage Fermentations †. Fermentation, 9(10). https://doi.org/10.3390/fermentation9100914 Uzun, D. E., Nemli, E., Apak, R., Bener, M., Tomas, M., Yağcı, S., & Capanoglu, E. (2025). Starch-based composite formulation of chickpea flour and black carrot (Daucus carota l.) pomace in extruded snacks: In vitro gastrointestinal behavior and stability of bioactive compounds. International Journal of Biological Macromolecules, 293. https://doi.org/10.1016/j.ijbiomac.2024.139075 Varsha, K., & Mohan, S. (2016). Extruded Product Quality Assessment Indices: a Review. International Journal of Agriculture Sciences, 8(54), 975–3710. https://bioinfopublication.org/files/articles/8_54_31_IJAS.pdf Waldron, K. W., & Faulds, C. B. (2007). Cell Wall Polysaccharides: Composition and Structure. In Comprehensive Glycoscience (pp. 181–201). Elsevier. https://doi.org/10.1016/B978-044451967-2/00005-2 Wang, S., Gu, B. J., & Ganjyal, G. M. (2019). Impacts of the inclusion of various fruit pomace types on the expansion of corn starch extrudates. LWT, 110, 223–230. https://doi.org/10.1016/j.lwt.2019.03.094 Wang, T., He, F., & Chen, G. (2014). Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. Journal of Functional Foods, 7(1), 101–111. https://doi.org/10.1016/j.jff.2014.01.033 Wani, S. A., Alwahibi, M. S., Elshikh, M. S., Abdel Gawwad, M. R., Ali, M. A., Alhaji, J. H., Naik, H. R., & Kumar, P. (2022). Sensory, functional characteristics and in vitro digestibility of snacks supplemented with non-traditional ingredient raw and processed fenugreek. International Journal of Food Science and Technology, 57(8), 4716–4725. https://doi.org/10.1111/ijfs.15441 Wani, S. A., Ganie, N. A., & Kumar, P. (2021). Quality characteristics, fatty acid profile and glycemic index of extrusion processed snacks enriched with the multicomponent mixture of cereals and legumes. Legume Science, 3(2). https://doi.org/10.1002/leg3.76 Wani, S. A., & Kumar, P. (2016). Effect of Extrusion on the Nutritional, Antioxidant and Microstructural Characteristics of Nutritionally Enriched Snacks. Journal of Food Processing and Preservation, 40(2), 166–173. https://doi.org/10.1111/jfpp.12593 Wójtowicz, A., Combrzyński, M., Biernacka, B., Różyło, R., Bąkowski, M., Wojtunik-Kulesza, K., Mołdoch, J., & Kowalska, I. (2023). Fresh Chokeberry (Aronia melanocarpa) Fruits as Valuable Additive in Extruded Snack Pellets: Selected Nutritional and Physiochemical Properties. Plants, 12(18). https://doi.org/10.3390/plants12183276 Wójtowicz, A., Lisiecka, K., Mitrus, M., Nowak, G., Golian, M., Oniszczuk, A., Kasprzak, K., Widelska, G., Oniszczuk, T., & Combrzyński, M. (2019). Physical properties and texture of gluten-free snacks supplemented with selected fruit additions. International Agrophysics, 33(4), 407–416. https://doi.org/10.31545/intagr/112563 Wójtowicz, A., Zalewska-Korona, M., Jabłońska-Rya, E., Skalicka-Woźniak, K., & Oniszczuk, A. (2018). Chemical characteristics and physical properties of functional snacks enriched with powdered tomato. Polish Journal of Food and Nutrition Sciences, 68(3), 251–261. https://doi.org/10.1515/pjfns-2017-0028 Wolf, B. (2010). Polysaccharide functionality through extrusion processing. In Current Opinion in Colloid and Interface Science (Vol. 15, Issues 1–2, pp. 50–54). https://doi.org/10.1016/j.cocis.2009.11.011 Xie, F., Huang, Q., Fang, F., Chen, S., Wang, Z., Wang, K., Fu, X., & Zhang, B. (2019). Effects of tea polyphenols and gluten addition on in vitro wheat starch digestion properties. International Journal of Biological Macromolecules, 126, 525–530. https://doi.org/10.1016/j.ijbiomac.2018.12.224 Yagci, S., Calıskan, R., Gunes, Z. S., Capanoglu, E., & Tomas, M. (2022). Impact of tomato pomace powder added to extruded snacks on the in vitro gastrointestinal behaviour and stability of bioactive compounds. Food Chemistry, 368(August 2021), 130847. https://doi.org/10.1016/j.foodchem.2021.130847 Yao, L., Yang, H., Meng, X., & Ragauskas, A. J. (2022). Toward a Fundamental Understanding of the Role of Lignin in the Biorefinery Process. In Frontiers in Energy Research (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fenrg.2021.804086 Ying, D., Myintzu, M., Lerisson, J., Pitts, K., Cheng, L., Sanguansri, L., & Augustin, M. A. (2017). Physical properties and FTIR analysis of rice-oat fl our and maize-oat fl our based extruded food products containing olive pomace. Food Research International, 100, 665–673. https://doi.org/10.1016/j.foodres.2017.07.062 Ying, D., Sanguansri, L., Cheng, L., & Augustin, M. A. (2021). Nutrient‐dense shelf‐stable vegetable powders and extruded snacks made from carrots and broccoli. Foods, 10(10). https://doi.org/10.3390/foods10102298 Zeng, X., Li, T., Zhu, J., Chen, L., & Zheng, B. (2021). Printability improvement of rice starch gel via catechin and procyanidin in hot extrusion 3D printing. Food Hydrocolloids, 121(June), 106997. https://doi.org/10.1016/j.foodhyd.2021.106997 Zeng, X., Zheng, B., Xiao, G., & Chen, L. (2022). Synergistic effect of extrusion and polyphenol molecular interaction on the short/long-term retrogradation properties of chestnut starch. Carbohydrate Polymers, 276(June 2021), 118731. https://doi.org/10.1016/j.carbpol.2021.118731 Zhang, H., Yu, D., Sun, J., Liu, X., Jiang, L., Guo, H., & Ren, F. (2014). Interaction of plant phenols with food macronutrients: Characterisation and nutritional-physiological consequences. Nutrition Research Reviews, 27(1), 1–15. https://doi.org/10.1017/S095442241300019X Zhang, M., Bai, X., & Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98–103. https://doi.org/10.1016/j.jcs.2011.04.001 Zhang, Q., Cheng, Z., Wang, Y., & Fu, L. (2020). Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Critical Reviews in Food Science and Nutrition, 0(0), 1–27. https://doi.org/10.1080/10408398.2020.1803199 Zhang, X., Li, M., Zhao, W., Gao, Z., Wu, M., Zhou, T., Wu, C., Zhou, K., Han, X., & Zhou, Q. (2022). Hawthorn Juice Simulation System for Pectin and Polyphenol Adsorption Behavior: Kinetic Modeling Properties and Identification of the Interaction Mechanism. Foods, 11(18). https://doi.org/10.3390/foods11182813 Zhao, B., Sun, S., Lin, H., Chen, L., Qin, S., Wu, W., Zheng, B., & Guo, Z. (2018). Physicochemical properties and digestion of the lotus seed starch-green tea polyphenol complex under ultrasound-microwave synergistic interaction. Ultrasonics - Sonochemistry, 1–14. https://doi.org/10.1016/j.ultsonch.2018.11.001 Zhao, C., Wan, X., Zhou, S., & Cao, H. (2020). Natural Polyphenols: A Potential Therapeutic Approach to Hypoglycemia. EFood, 1(2), 107. https://doi.org/10.2991/efood.k.200302.001 Zhao, Q., Yu, X., Zhou, C., Yagoub, A. E. G. A., & Ma, H. (2020). Effects of collagen and casein with phenolic compounds interactions on protein in vitro digestion and antioxidation. Lwt, 124(February), 109192. https://doi.org/10.1016/j.lwt.2020.109192 Zhu, F. (2015). Interactions between starch and phenolic compound. Trends in Food Science and Technology, 43(2), 129–143. https://doi.org/10.1016/j.tifs.2015.02.003 Zhu, F. (2018). Interactions between cell wall polysaccharides and polyphenols. Critical Reviews in Food Science and Nutrition, 58(11), 1808–1831. https://doi.org/10.1080/10408398.2017.1287659
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_16ec
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lembIngeniería de procesosspa
dc.subject.lembSubproductosspa
dc.subject.lembProductos de residuosspa
dc.subject.lembAdministración industrialspa
dc.subject.lembIndustria y comercio de alimentosspa
dc.subject.proposalFunctional foodseng
dc.subject.proposalOptimizationeng
dc.subject.proposalPolyphenolseng
dc.subject.proposalInteractionseng
dc.subject.proposalAlimentos funcionalesspa
dc.subject.proposalOptimizaciónspa
dc.subject.proposalPolifenolesspa
dc.subject.proposalInteraccionesspa
dc.titleEffect of the inclusion of strawberry by-products as a source of phenolic compounds and dietary fiber on the technofunctional properties of a puffed snack obtained by extrusioneng
dc.titleEfecto de la inclusión de subproductos de fresa como fuente de compuestos fenólicos y fibra dietaria sobre las propiedades tecnofuncionales de un snack expandido por extrusiónspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.otherTrabajo de grado - Doctorado
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
person.affiliation.nameDoctorado en Ingeniería de Procesos - Presencial

Archivos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.92 KB
Formato:
Item-specific license agreed upon to submission
Descripción: