Publicación:
Identificación de las principales prácticas implementadas por las entidades financieras para combatir el fraude financiero

dc.contributor.advisorPatiño Castro, Omar Alonso
dc.contributor.authorCárdenas Saavedra, Jeison Felipe
dc.contributor.authorCárdenas Justinico, Jessica Lorena
dc.contributor.juryGuerrero Cabarcas, Mauricio Javier
dc.contributor.juryDelgado Ortiz, Sandra Marcela
dc.creator.id1014263104
dc.creator.id1094890340
dc.date.accessioned2025-08-17T23:40:15Z
dc.date.issued2025-07-06
dc.description.abstractEl presente trabajo analiza las principales prácticas implementadas por las entidades financieras para combatir el fraude financiero, con un enfoque especial en el Banco Itaú Colombia. Este fenómeno, potenciado por la digitalización y los avances tecnológicos, representa un desafío creciente tanto a nivel global como en América Latina. Mediante una revisión sistemática de literatura y el análisis de casos reales, se identificaron patrones de fraude interno y externo, así como metodologías basadas en aprendizaje automático, minería de datos y técnicas avanzadas como redes neuronales y algoritmos de detección de anomalías. Los resultados muestran que las herramientas tecnológicas, combinadas con controles internos efectivos y una cultura organizacional y una estructura de Gobierno de Datos sólida, son clave para mitigar los riesgos de fraude y mejorar la sostenibilidad de las operaciones bancarias. Este estudio ofrece recomendaciones prácticas y un marco metodológico para fortalecer la gestión de riesgos financieros en las instituciones.spa
dc.description.abstractThe present study analyzes the main practices implemented by financial institutions to combat financial fraud, with a particular focus on Banco Itaú Colombia. This phenomenon, driven by digitalization and technological advancements, poses a growing challenge both globally and in Latin America. Through a systematic literature review and the analysis of real cases, patterns of internal and external fraud were identified, as well as methodologies based on machine learning, data mining, and advanced techniques such as neural networks and anomaly detection algorithms. The results demonstrate that technological tools, combined with effective internal controls, a strong organizational culture, and a robust Data Governance structure, are essential to mitigating fraud risks and improving the sustainability of banking operations. This study provides practical recommendations and a methodological framework to strengthen financial risk management within institutions.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Administración de Empresas - MBAspa
dc.description.tableofcontents1. Introducción 1.1. Tema de Investigación 1.2. Problema de Investigación 1.1.1. Antecedentes 1.1.2. Planteamiento del Problema 1.1.3. Pregunta de Investigación 2. Objetivos de investigación 2.1. Objetivo general 2.2. Objetivos específicos 3. Justificación 4. Marco Institucional 4.1. Sector Financiero Colombiano y Posición en el Mercado 4.2. Productos y Servicios 4.3. Tendencias y Retos del Sector 5. Marco Conceptual y Contextual 5.1. Definición de Fraude 5.1.1. Fraude Interno 5.1.2. Prevención y Detección 6. Diseño Metodológico de la Consultoría para el Banco Itaú 6.1. Enfoque de la Investigación 6.2. Fases de la Consultoría 6.3. Procedimientos y Técnicas para el Diagnóstico 6.3.1. Procedimientos 6.3.2. Técnicas 7. Diagnostico Organizacional 7.1. Revisión de la literatura científica sobre las prácticas financieras bajo el contexto mundial 7.2. Investigación sobre casos reales de fraude en entidades financieras 7.3. Generación de la metodología para la selección de modelos de predicción de fraudes financieros 7.4. Procesamiento de Datos Factores Clave para una Gobernanza de Datos Efectiva Gobernanza de Datos como Defensa Contra el Fraude Normativas y Calidad de Datos 8. Resultados de la Solución 8.1. Metodología para la selección del modelo óptimo de detección de fraude 8.1.1. Curar 8.1.2. Comprender 8.1.3. Curar y Comprender 8.1.4. Selección del Modelo 8.1.5. Proteger 8.1.6. Proteger y Comprender 9. Conclusiones y Recomendaciones 9.1. Conclusiones 9.2. Recomendaciones 10. Referencias Bibliográficas Anexo A: Matriz de Consulta Bibliográficaspa
dc.description.tableofcontents1. Introduction 1.1. Research Topic 1.2. Research Problem 1.1.1. Background 1.1.2. Problem Statement 1.1.3. Research Question 2. Research Objectives 2.1. General Objective 2.2. Specific Objectives 3. Justification 4. Institutional Framework 4.1. Colombian Financial Sector and Market Position 4.2. Products and Services 4.3. Trends and Challenges in the Sector 5. Conceptual and Contextual Framework 5.1. Definition of Fraud 5.1.1. Internal Fraud 5.1.2. Prevention and Detection 6. Methodological Design of the Consulting Firm for Itaú Bank 6.1. Research Approach 6.2. Consulting Phases 6.3. Diagnostic Procedures and Techniques 6.3.1. Procedures 6.3.2. Techniques 7. Organizational Diagnosis 7.1. Review of the Scientific Literature on Financial Practices in a Global Context 7.2. Research on Actual Fraud Cases in Financial Institutions 7.3. Generation of the Methodology for Selecting Financial Fraud Prediction Models 7.4. Data Processing Key Factors for Effective Data Governance Data Governance as a Defense Against Fraud Regulations and Data Quality 8. Solution Results 8.1. Methodology for Selecting the Optimal Fraud Detection Model 8.1.1. Curation 8.1.2. Understanding 8.1.3. Curation and Understanding 8.1.4. Model Selection 8.1.5. Protection 8.1.6. Protection and Understanding 9. Conclusions and Recommendations 9.1. Conclusions 9.2. Recommendations 10. References Annex A: Reference Reference Matrixeng
dc.formatpdf
dc.format.extent116 páginas
dc.format.mediumRecurso electrónicospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad Eanspa
dc.identifier.localBDM-MBA
dc.identifier.reponamereponame:Repositorio Institucional Biblioteca Digital Minervaspa
dc.identifier.repourlrepourl:https://repository.ean.edu.co/
dc.identifier.urihttps://hdl.handle.net/10882/15012
dc.language.isospa
dc.publisher.facultyFacultad de Administración, Finanzas y Ciencias Económicasspa
dc.publisher.programMaestría en Administración de Empresas - MBAspa
dc.relation.references(43) Itaú acelera el despliegue de modelos en un 75% con infraestructura AWS - YouTube. (n.d.). Retrieved January 31, 2025, from https://www.youtube.com/watch?v=vSHXS4q82v0 (43) Itaú Unibanco adopts the data mesh architecture and relies on AWS support - English - YouTube. (n.d.). Retrieved January 31, 2025, from https://www.youtube.com/watch?v=mSUO9-SUuB4 Abadlia, H., & Smairi, N. (2024). Enhanced particle swarm optimization-based hyperparameter optimized stacked autoencoder for credit card fraud detection. International Journal of Data Science and Analytics, 1–15. https://doi.org/10.1007/S41060-024-00524-X/FIGURES/14 Abdallah, A., Maarof, M. A., & Zainal, A. (2016a). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90–113. https://doi.org/10.1016/J.JNCA.2016.04.007 Abdallah, A., Maarof, M. A., & Zainal, A. (2016b). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90–113. https://doi.org/10.1016/J.JNCA.2016.04.007 Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., Ayeh, S. A., & Eshun, J. (2023a). A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions. Decision Analytics Journal, 6, 100163. https://doi.org/10.1016/J.DAJOUR.2023.100163 Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., Ayeh, S. A., & Eshun, J. (2023b). A supervised machine learning algorithm for detecting and predicting fraud in credit card transactions. Decision Analytics Journal, 6, 100163. https://doi.org/10.1016/J.DAJOUR.2023.100163 Ali, N. T., Hasan, S. J., Ghandour, A., & Al-Hchimy, Z. S. (2024). Improving credit card fraud detection using machine learning and GAN technology. BIO Web of Conferences, 97. https://doi.org/10.1051/bioconf/20249700076 Almhaithawi, D., Jafar, A., & Aljnidi, M. (2020a). Example-dependent cost-sensitive credit cards fraud detection using SMOTE and Bayes minimum risk. SN Applied Sciences, 2(9), 1–12. https://doi.org/10.1007/S42452-020-03375-W/FIGURES/6 Almhaithawi, D., Jafar, A., & Aljnidi, M. (2020b). Example-dependent cost-sensitive credit cards fraud detection using SMOTE and Bayes minimum risk. SN Applied Sciences, 2(9). https://doi.org/10.1007/s42452-020-03375-w Almhaithawi, D., Jafar, A., & Aljnidi, M. (2020c). Example-dependent cost-sensitive credit cards fraud detection using SMOTE and Bayes minimum risk. SN Applied Sciences, 2(9). https://doi.org/10.1007/s42452-020-03375-w Ashfaq, T., Khalid, R., Yahaya, A. S., Aslam, S., Azar, A. T., Alsafari, S., & Hameed, I. A. (2022). A Machine Learning and Blockchain Based Efficient Fraud Detection Mechanism. Sensors, 22(19). https://doi.org/10.3390/s22197162 Ashfaq, T., Khalid, R., Yahaya, A. S., Aslam, S., Taher Azar, A., Alsafari, S., & Hameed, I. A. (2022). A Machine Learning and Blockchain Based Efficient Fraud Detection Mechanism. https://doi.org/10.3390/s22197162 Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. S., & Buyya, R. (2015). Big Data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 79–80, 3–15. https://doi.org/10.1016/J.JPDC.2014.08.003 Balaji, K., Saxena, N., Behera, N. R., Kiran Kumar, M., Prasad, H. K., & Gedamkar, P. R. (2024). Improved Fraud Detection in Banking Systems through Machine Learning and Big Data Analytics with Management Key Components. Proceedings - 3rd International Conference on Advances in Computing, Communication and Applied Informatics, ACCAI 2024. https://doi.org/10.1109/ACCAI61061.2024.10601803 Banco Itau. (2024). Presentación institucional. Benchaji, I., Douzi, S., El Ouahidi, B., & Jaafari, J. (2021). Enhanced credit card fraud detection based on attention mechanism and LSTM deep model. https://doi.org/10.1186/s40537-021-00541-8 Bose, R., Chakraborty, S., & Roy, S. (2019). Explaining the Workings Principle of Cloud-based Multi-factor Authentication Architecture on Banking Sectors. Proceedings - 2019 Amity International Conference on Artificial Intelligence, AICAI 2019, 764–768. https://doi.org/10.1109/AICAI.2019.8701317 Bozkuş Kahyaoğlu Editor, S. (2022a). Accounting, Finance, Sustainability, Governance & Fraud: Theory and Application. https://link.springer.com/bookseries/13615 Bozkuş Kahyaoğlu Editor, S. (2022b). Accounting, Finance, Sustainability, Governance & Fraud: Theory and Application. https://link.springer.com/bookseries/13615 Chen, K., Seshadri, S., & Zhang, L.-J. (Eds.). (2019). Big Data – BigData 2019 (Vol. 11514). Springer International Publishing. https://doi.org/10.1007/978-3-030-23551-2 CHEN, R.-C., CHEN, T.-S., & LIN, C.-C. (2006). A NEW BINARY SUPPORT VECTOR SYSTEM FOR INCREASING DETECTION RATE OF CREDIT CARD FRAUD. International Journal of Pattern Recognition and Artificial Intelligence, 20(02), 227–239. https://doi.org/10.1142/S0218001406004624 Cherif, A., Ammar, H., Kalkatawi, M., Alshehri, S., & Imine, A. (2024). Encoder–decoder graph neural network for credit card fraud detection. Journal of King Saud University - Computer and Information Sciences, 36(3). https://doi.org/10.1016/j.jksuci.2024.102003 Chhabra, R., Goswami, S., & Ranjan, R. K. (2024). A voting ensemble machine learning based credit card fraud detection using highly imbalance data. Multimedia Tools and Applications, 83(18), 54729–54753. https://doi.org/10.1007/S11042-023-17766-9/FIGURES/19 Cybersource. (n.d.). 2023 Global Ecommerce Payments And Fraud Report. De Leon Obrador, M. (2022). WIRECARD FRAUD: ANALYSIS AND PROPOSED PREVENTION STRATEGIES. Delarue, M. L. (2020). Preventing and detecting fraud. https://www.ey.com/es_co/assurance/preventing-and-detecting-fraud-how-to-strengthen-the-roles-of-companies-auditors-and-regulators Dewi, R., Sarno, R., Fatichah, C., & Dwi, S. (2017a). Fraud detection on event log of bank financial credit business process using Hidden Markov Model algorithm. Proceeding - 2017 3rd International Conference on Science in Information Technology: Theory and Application of IT for Education, Industry and Society in Big Data Era, ICSITech 2017, 2018-January, 35–40. https://doi.org/10.1109/ICSITECH.2017.8257082 Dewi, R., Sarno, R., Fatichah, C., & Dwi, S. (2017b). Fraud detection on event log of bank financial credit business process using Hidden Markov Model algorithm. Proceeding - 2017 3rd International Conference on Science in Information Technology: Theory and Application of IT for Education, Industry and Society in Big Data Era, ICSITech 2017, 2018-January, 35–40. https://doi.org/10.1109/ICSITECH.2017.8257082 Ding, Z. (2023). Construction and Exploration of a Financial Risk Control Model Based on Machine Learning. 2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques, EASCT 2023. https://doi.org/10.1109/EASCT59475.2023.10393547 Flondor, E., Donath, L., & Neamtu, M. (2024). Automatic Card Fraud Detection Based on Decision Tree Algorithm. Applied Artificial Intelligence, 38(1). https://doi.org/10.1080/08839514.2024.2385249/SUPPL_FILE/UAAI_A_2385249_SM7315.BIB Fu, B., Yu, X., & Feng, T. (2022). CT-GCN: a phishing identification model for blockchain cryptocurrency transactions. International Journal of Information Security, 21(6), 1223–1232. https://doi.org/10.1007/s10207-022-00606-6 Grove, H., & Basilico, E. (2008). Fraudulent Financial Reporting Detection: Key Ratios Plus Corporate Governance Factors. International Studies of Management & Organization, 38(3), 10–42. https://doi.org/10.2753/IMO0020-8825380301 Haigh, R. (2024). Global 500 2024 | The Annual Brand Value Ranking | Brandirectory. https://brandirectory.com/rankings/global/ Hajek, P., Abedin, M. Z., & Sivarajah, U. (2023). Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework. Information Systems Frontiers, 25(5), 1985–2003. https://doi.org/10.1007/s10796-022-10346-6 Hajek, P., Mohammad, ·, Abedin, Z., & Sivarajah, · Uthayasankar. (2023). Fraud Detection in Mobile Payment Systems using an XGBoost-based Framework. 25, 1985–2003. https://doi.org/10.1007/s10796-022-10346-6 Hilal, W., Gadsden, S. A., & Yawney, J. (2022). Financial Fraud: A Review of Anomaly Detection Techniques and Recent Advances. Expert Systems with Applications, 193, 116429. https://doi.org/10.1016/J.ESWA.2021.116429 Hong, Z., Tu, B., Tong, X., Pan, H., Zhou, R., Zhang, Y., Han, Y., Wang, J., Yang, S., & Ma, Z. (2023). A Fast Large-Scale Path Planning Method on Lunar DEM Using Distributed Tile Pyramid Strategy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 344–355. https://doi.org/10.1109/JSTARS.2022.3226527 Ileberi, E., Sun, Y., & Wang, Z. (2022a). A machine learning based credit card fraud detection using the GA algorithm for feature selection. Journal of Big Data, 9(1). https://doi.org/10.1186/s40537-022-00573-8 Ileberi, E., Sun, Y., & Wang, Z. (2022b). A machine learning based credit card fraud detection using the GA algorithm for feature selection. Journal of Big Data, 9(1). https://doi.org/10.1186/s40537-022-00573-8 Innan, N., Sawaika, A., Dhor, A., Dutta, S., Thota, S., Gokal, H., Patel, N., Khan, M. A. Z., Theodonis, I., & Bennai, M. (2024a). Financial fraud detection using quantum graph neural networks. Quantum Machine Intelligence, 6(1), 1–18. https://doi.org/10.1007/S42484-024-00143-6/FIGURES/23 Innan, N., Sawaika, A., Dhor, A., Dutta, S., Thota, S., Gokal, H., Patel, N., Khan, M. A. Z., Theodonis, I., & Bennai, M. (2024b). Financial fraud detection using quantum graph neural networks. Quantum Machine Intelligence, 6(1), 1–18. https://doi.org/10.1007/S42484-024-00143-6/FIGURES/23 Itaú. (2016). Presentación Institucional. Itaú. (2022). Presentación Institucional dic 22. Itaú. (2023a). Banco Itaú - Banca Personas - Banco Itaú Colombia - Banco Itaú. https://banco.itau.co/ Itaú. (2023b). Bonos subordinados. Itaú. (2023c). Presentación institucional. Itoo, F., Meenakshi, & Singh, S. (2021a). Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection. International Journal of Information Technology (Singapore), 13(4), 1503–1511. https://doi.org/10.1007/s41870-020-00430-y Itoo, F., Meenakshi, & Singh, S. (2021b). Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection. International Journal of Information Technology (Singapore), 13(4), 1503–1511. https://doi.org/10.1007/s41870-020-00430-y Joyanes. (2019). BIG DATA: ARQUITECTURA, ECOSISTEMA HADOOP Y OPEN DATA). Kafila, Hassan, M., Veena, C., Singla, A., Joshi, A., & Lourens, M. (2024). Fraud Detection in IoT-Based Financial Transactions Using Anomaly Detection Techniques. Proceedings - 3rd International Conference on Advances in Computing, Communication and Applied Informatics, ACCAI 2024. https://doi.org/10.1109/ACCAI61061.2024.10602423 Kancharla, J. R., & Madhu Kumar, S. D. (2023). Breaking Down Data Silos: Data Mesh to Achieve Effective Aggregation in Data Localization. 2023 International Conference on Computer, Electronics and Electrical Engineering and Their Applications, IC2E3 2023. https://doi.org/10.1109/IC2E357697.2023.10262765 Khalid, A. R., Owoh, N., Uthmani, O., Ashawa, M., Osamor, J., & Adejoh, J. (2024). Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach. Big Data and Cognitive Computing 2024, Vol. 8, Page 6, 8(1), 6. https://doi.org/10.3390/BDCC8010006 Krishnavardhan, N., Govindarajan, · M, Rao, · S V Achutha, Govindarajan, M., & Rao, S. V. A. (2024). An intelligent credit card fraudulent activity detection using hybrid deep learning algorithm. 83, 87621–87646. https://doi.org/10.1007/s11042-024-18793-w Krishnavardhan, N., Govindarajan, M., & Rao, S. V. A. (2023). Flower pollination optimization algorithm with stacked temporal convolution network-based classification for financial anomaly fraud detection. Soft Computing, 1–14. https://doi.org/10.1007/S00500-023-08732-6/TABLES/16 Krishnavardhan, N., Govindarajan, M., & Rao, S. V. A. (2024). An intelligent credit card fraudulent activity detection using hybrid deep learning algorithm. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-18793-w Kurshan, E., Shen, H., & Yu, H. (2020). Financial Crime Fraud Detection Using Graph Computing: Application Considerations Outlook. Proceedings - 2020 2nd International Conference on Transdisciplinary AI, TransAI 2020, 125–130. https://doi.org/10.1109/TransAI49837.2020.00029 Kute, D. V., Pradhan, B., Shukla, N., & Alamri, A. (2021). Deep Learning and Explainable Artificial Intelligence Techniques Applied for Detecting Money Laundering-A Critical Review. In IEEE Access (Vol. 9, pp. 82300–82317). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3086230 Leal, L. F., Luis, B., & Ferrer, G. (2014). IMPORTANCIA DEL CONTROL INTERNO PARA LA PREVENCIÓN DEL FRAUDE MALVERSACIÓN DE ACTIVOS. Li, S. H., Yen, D. C., Lu, W. H., & Wang, C. (2012a). Identifying the signs of fraudulent accounts using data mining techniques. Computers in Human Behavior, 28(3), 1002–1013. https://doi.org/10.1016/J.CHB.2012.01.002 Li, S. H., Yen, D. C., Lu, W. H., & Wang, C. (2012b). Identifying the signs of fraudulent accounts using data mining techniques. Computers in Human Behavior, 28(3), 1002–1013. https://doi.org/10.1016/j.chb.2012.01.002 Li, W., Wu, C. S., & Ruan, S. M. (2022). CUS-RF-Based Credit Card Fraud Detection with Imbalanced Data. Journal of Risk Analysis and Crisis Response, 12(3), 110–123. https://doi.org/10.54560/jracr.v12i3.332 Li, W., Wu, C.-S., & Ruan, S.-M. (n.d.). CUS-RF-Based Credit Card Fraud Detection with Imbalanced Data. Journal of Risk Analysis and Crisis Response, 2022(3), 110–123. https://doi.org/10.54560/jracr.v12i3.332 Li, W., Zhu, J., Zhang, Y., & Zhang, S. (2020). Design and implementation of intelligent traffic and big data mining system based on internet of things. Journal of Intelligent & Fuzzy Systems, 38(2), 1967–1975. https://doi.org/10.3233/JIFS-190558 Li, Y., Chen, Z., Zha, D., Zhou, K., Jin, H., Chen, H., & Hu, X. (2022). Automated Anomaly Detection via Curiosity-Guided Search and Self-Imitation Learning. IEEE Transactions on Neural Networks and Learning Systems, 33(6), 2365–2377. https://doi.org/10.1109/TNNLS.2021.3105636 Lilly, J., Durr, D., Grogan, A., & Super, J. F. (2021). Wells Fargo: Administrative evil and the pressure to conform. Business Horizons, 64(5), 587–597. https://doi.org/10.1016/J.BUSHOR.2021.02.028 Lopez, R. E. A. (2017). A review of computer simulation for fraud detection research in financial datasets. FTC 2016 - Proceedings of Future Technologies Conference, 932–935. https://doi.org/10.1109/FTC.2016.7821715 Malagón González, J., Malagón, J., Presidente, G., Vera, A., Vicepresidente, S., Germán, T., & Moreno, M. (n.d.). Principales hitos y desafíos de la banca colombiana: Informe de Gestión Gremial 2023. Mashrur, A., Luo, W., Zaidi, N. A., & Robles-Kelly, A. (2020). Machine learning for financial risk management: A survey. In IEEE Access (Vol. 8, pp. 203203–203223). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2020.3036322 Maulana, L. R., Fajar, A. N., & Meyliana. (2021). Extending the Design of Smart Mobile Application to Detect Fraud Theft of E-Banking Access Using Big Data Analytic and SOA. Proceedings - 2021 IEEE 5th International Conference on Information Technology, Information Systems and Electrical Engineering: Applying Data Science and Artificial Intelligence Technologies for Global Challenges During Pandemic Era, ICITISEE 2021, 360–364. https://doi.org/10.1109/ICITISEE53823.2021.9655805 Motie, S., & Raahemi, B. (2024). Financial fraud detection using graph neural networks: A systematic review. Expert Systems with Applications, 240, 122156. https://doi.org/10.1016/J.ESWA.2023.122156 Ocampo, J. A. (2021). SISTEMA FINANCIERO COLOMBIANO 1870-2021. www.mnrediciones.com OEA, & ASOBANCARIA. (2020). Estado de la ciberseguridad en el sistema financiero colombiano. Pandey, D. K., Hassan, M. K., Kumari, V., Zaied, Y. Ben, & Rai, V. K. (2024). Mapping the landscape of FinTech in banking and finance: A bibliometric review. Research in International Business and Finance, 67, 102116. https://doi.org/10.1016/J.RIBAF.2023.102116 Perdomo Maldonado, S. (2017). Proyecto F Diagnóstico del uso del efectivo en Colombia. www.comunicaciongraficalegis.com RB, A., & KR, S. K. (2021). Credit card fraud detection using artificial neural network. Global Transitions Proceedings, 2(1), 35–41. https://doi.org/10.1016/j.gltp.2021.01.006 Saha, P., Aanand, S., Shah, P., Khatwani, R., Mitra, P. K., & Sekhar, R. (2023). Comparative Analysis of ML Algorithms for Fraud Detection in Financial Transactions. 2023 1st International Conference on Advances in Electrical, Electronics and Computational Intelligence, ICAEECI 2023. https://doi.org/10.1109/ICAEECI58247.2023.10370930 Shukla, P., Aggarwal, M., Jain, P., Khanna, P., & Rana, M. K. (2023a). Financial Fraud Detection and Comparison Using Different Machine Learning Techniques. Proceedings - International Conference on Technological Advancements in Computational Sciences, ICTACS 2023, 1205–1210. https://doi.org/10.1109/ICTACS59847.2023.10390165 Shukla, P., Aggarwal, M., Jain, P., Khanna, P., & Rana, M. K. (2023b). Financial Fraud Detection and Comparison Using Different Machine Learning Techniques. Proceedings - International Conference on Technological Advancements in Computational Sciences, ICTACS 2023, 1205–1210. https://doi.org/10.1109/ICTACS59847.2023.10390165 Tang, Y., & Liang, Y. (2024). Credit card fraud detection based on federated graph learning. https://doi.org/10.1016/j.eswa.2024.124979 Tayebi, M., Said, ·, & Kafhali, E. (2022). Performance analysis of metaheuristics based hyperparameters optimization for fraud transactions detection. 17, 921–939. https://doi.org/10.1007/s12065-022-00764-5 Tong, G., & Shen, J. (2023). Financial transaction fraud detector based on imbalance learning and graph neural network. Applied Soft Computing, 149, 110984. https://doi.org/10.1016/J.ASOC.2023.110984 Tripathi, K. K., & Pavaskar, M. A. (2012). Survey on Credit Card Fraud Detection Methods. www.ijetae.com Usman, A. U., Abdullahi, S. B., Liping, Y., Alghofaily, B., Almasoud, A. S., & Rehman, A. (2024). Financial Fraud Detection Using Value-at-Risk With Machine Learning in Skewed Data. IEEE Access, 12, 64285–64299. https://doi.org/10.1109/ACCESS.2024.3393154 Usman, A. U., Adfullahi, S. B., & Luping, Y. (2024). Financial Fraud Detection Using Value-at-Risk With Machine Learning in Skewed Data. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10507824 Valenzuela, M., Julián, G., Rojas Castañeda, A., Hernando, P., Gómez, J., Vicepresidente, R., José, J., Gómez, M., Directora, S., Normativa, J., Ovalle, A. M., Directora, H., Operacional, J., María, I., & Ordóñez, M. (2022a). La reinvención financiera en la era digital. Valenzuela, M., Julián, G., Rojas Castañeda, A., Hernando, P., Gómez, J., Vicepresidente, R., José, J., Gómez, M., Directora, S., Normativa, J., Ovalle, A. M., Directora, H., Operacional, J., María, I., & Ordóñez, M. (2022b). La reinvención financiera en la era digital. Vargas Rojas, L., & Luna, L. (2020). La transformación digital en el sector bancario y la atención al cliente en épocas de pandemia Leidy. Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic, M., & Anderla, A. (2019). Credit Card Fraud Detection - Machine Learning methods. 2019 18th International Symposium INFOTEH-JAHORINA, INFOTEH 2019 - Proceedings. https://doi.org/10.1109/INFOTEH.2019.8717766 Velásquez, J. D. (2015a). A short guide to writing systematic literature reviews. Part 4. In DYNA (Colombia) (Vol. 82, Issue 190, pp. 9–12). Universidad Nacional de Colombia. https://doi.org/10.15446/dyna.v82n190.49511 Velásquez, J. D. (2015b). Una Guía Corta para Escribir Revisiones Sistemáticas de Literatura Parte 3. DYNA, 82(189), 9–12. https://doi.org/10.15446/dyna.v82n189.48931 Venkata, V., Reddy, K., Vijaya, R., Reddy, K., Siva, M., Munaga, K., Karnam, B., Kumar Maddila, S., & Kolli, C. S. (2024). Deep learning-based credit card fraud detection in federated learning. Expert Systems With Applications, 255, 124493. https://doi.org/10.1016/j.eswa.2024.124493 Vinther Daugaard, T., Bisgaard Jensen, J., Kauffman, R. J., & Kim, K. (2024). Blockchain solutions with consensus algorithms and immediate finality: Toward Panopticon-style monitoring to enhance anti-money laundering. Electronic Commerce Research and Applications, 65, 101386. https://doi.org/10.1016/J.ELERAP.2024.101386 Wang, D., Lin, J., Peng, C., & Quanhui, J. (2019). A Semi-Supervised Graph Attentive Network for Financial Fraud Detection. https://ieeexplore.unalproxy.elogim.com/document/8970829 Wang, D., Qi, Y., Lin, J., Cui, P., Jia, Q., Wang, Z., Fang, Y., Yu, Q., Zhou, J., & Yang, S. (2019). A semi-supervised graph attentive network for financial fraud detection. Proceedings - IEEE International Conference on Data Mining, ICDM, 2019-November, 598–607. https://doi.org/10.1109/ICDM.2019.00070 Wu, B., Lv, X., Alghamdi, A., Abosaq, H., & Alrizq, M. (2023). Advancement of management information system for discovering fraud in master card based intelligent supervised machine learning and deep learning during SARS-CoV2. Information Processing & Management, 60(2), 103231. https://doi.org/10.1016/J.IPM.2022.103231 Xia, D., Lu, X., Li, H., Wang, W., Li, Y., & Zhang, Z. (2018). A MapReduce-Based Parallel Frequent Pattern Growth Algorithm for Spatiotemporal Association Analysis of Mobile Trajectory Big Data. Complexity, 2018. https://doi.org/10.1155/2018/2818251 Xie, Y., Li, A., Hu, B., Gao, L., & Tu, H. (2023a). A Credit Card Fraud Detection Model Based on Multi-Feature Fusion and Generative Adversarial Network. Computers, Materials and Continua, 76(3), 2707–2726. https://doi.org/10.32604/cmc.2023.037039 Xie, Y., Li, A., Hu, B., Gao, L., & Tu, H. (2023b). A Credit Card Fraud Detection Model Based on Multi-Feature Fusion and Generative Adversarial Network. Computers, Materials and Continua, 76(3), 2707–2726. https://doi.org/10.32604/cmc.2023.037039 Xiong, T., Ma, Z., Li, Z., & Dai, J. (2022). The analysis of influence mechanism for internet financial fraud identification and user behavior based on machine learning approaches. International Journal of System Assurance Engineering and Management, 13, 996–1007. https://doi.org/10.1007/s13198-021-01181-0 Yang, W., Zhang, Y., Ye, K., Li, L., & Xu, C. Z. (2019). FFD: A federated learning based method for credit card fraud detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11514 LNCS, 18–32. https://doi.org/10.1007/978-3-030-23551-2_2/TABLES/4 Zhao, C., Sun, X., Wu, M., & Kang, L. (2024a). Advancing financial fraud detection: Self-attention generative adversarial networks for precise and effective identification. Finance Research Letters, 60. https://doi.org/10.1016/j.frl.2023.104843 Zhao, C., Sun, X., Wu, M., & Kang, L. (2024b). Advancing financial fraud detection: Self-attention generative adversarial networks for precise and effective identification. Finance Research Letters, 60. https://doi.org/10.1016/j.frl.2023.104843 Zhu, S., Wu, H., Ngai, E. W. T., Ren, J., He, D., Ma, T., & Li, Y. (2024). A Financial Fraud Prediction Framework Based on Stacking Ensemble Learning. https://doi.org/10.3390/systems12120588 Zioviris, G., Kolomvatsos, K., Stamoulis, G., & Stamoulis georges, G. (2022). Credit card fraud detection using a deep learning multistage model. The Journal of Supercomputing, 78, 14571–14596. https://doi.org/10.1007/s11227-022-04465-9
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.localAbierto (Texto Completo)spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.subject.armarcInstituciones financierasspa
dc.subject.armarcFraude de valoresspa
dc.subject.armarcDelitos económicosspa
dc.subject.armarcInstituciones financieras -- Prácticas corruptasspa
dc.subject.armarcCompetencia económica deslealspa
dc.subject.proposalFraude financierospa
dc.subject.proposalDetección de anomalíasspa
dc.subject.proposalModelos predictivosspa
dc.subject.proposalGobierno de datosspa
dc.subject.proposalControl internospa
dc.subject.proposalFinancial fraudeng
dc.subject.proposalAnomaly detectioneng
dc.subject.proposalPredictive modelseng
dc.subject.proposalData governanceeng
dc.subject.proposalInternal controleng
dc.titleIdentificación de las principales prácticas implementadas por las entidades financieras para combatir el fraude financierospa
dc.titleIdentification of the main practices implemented by financial institutions to combat financial fraudeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.otherTrabajo de grado - Maestría
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
person.affiliation.nameMaestría en Administración de Empresas - MBA
person.affiliation.nameMaestría en Inteligencia de Negocios - Virtual
relation.isReviewerOfPublication2caa0c66-3ba2-4cca-8397-820ec91264d4
relation.isReviewerOfPublication.latestForDiscovery2caa0c66-3ba2-4cca-8397-820ec91264d4

Archivos

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
CardenasJeison2025.pdf
Tamaño:
948.78 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría
Cargando...
Miniatura
Nombre:
CardenasJeison2025.pdf
Tamaño:
561.1 KB
Formato:
Adobe Portable Document Format
Descripción:
Autorización Publicación

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.92 KB
Formato:
Item-specific license agreed upon to submission
Descripción: